David Callan has authored 65 sequences. Here are the ten most recent ones:
A351385
Triangle read by rows: T(n,k) = Sum_{j=k..n} binomial(n + j, n)*binomial(n, j)/(j + 1).
Original entry on oeis.org
1, 2, 1, 6, 5, 2, 22, 21, 15, 5, 90, 89, 79, 49, 14, 394, 393, 378, 308, 168, 42, 1806, 1805, 1784, 1644, 1224, 594, 132, 8558, 8557, 8529, 8277, 7227, 4917, 2145, 429, 41586, 41585, 41549, 41129, 38819, 31889, 19877, 7865, 1430, 206098, 206097, 206052, 205392, 200772, 182754, 140712, 80652, 29172, 4862
Offset: 0
Triangle begins:
n
[0] 1;
[1] 2, 1;
[2] 6, 5, 2;
[3] 22, 21, 15, 5;
[4] 90, 89, 79, 49, 14;
...
-
Flatten[Table[
Sum[Binomial[n + j, n] Binomial[n, j]/(j + 1), {j, k, n}], {n, 0,
10}, {k, 0, n}]]
-
T(n,k)={sum(j=k, n, binomial(n+j, n)*binomial(n,j)/(j+1))} \\ Andrew Howroyd, Feb 09 2022
A350158
The distribution of the distance from the first weak subcedance to 1 on permutations.
Original entry on oeis.org
1, 2, 0, 5, 1, 0, 17, 5, 2, 0, 75, 23, 16, 6, 0, 407, 119, 104, 66, 24, 0, 2619, 719, 688, 558, 336, 120, 0, 19487, 5039, 4976, 4554, 3504, 2040, 720, 0, 164571, 40319, 40192, 38862, 34176, 25320, 14400, 5040, 0, 1555007, 362879, 362624, 358506, 338304, 287880, 207360, 115920, 40320, 0
Offset: 1
Triangle T(n,k) begins:
1;
2, 0;
5, 1, 0;
17, 5, 2, 0;
75, 23, 16, 6, 0;
407, 119, 104, 66, 24, 0;
2619, 719, 688, 558, 336, 120, 0;
19487, 5039, 4976, 4554, 3504, 2040, 720, 0;
164571, 40319, 40192, 38862, 34176, 25320, 14400, 5040, 0;
...
-
a[1, 0] = 1;
a[n_, 0] /; n >= 2 := 2 (n - 1)! + Sum[k^(n - k - 1) k!, {k, 1, n - 2}];
a[n_, k_] /; n > k >= 1 := (n - 1)! - k^(n - k - 1) k!;
Flatten[Table[a[n, k], {n, 10}, {k, 0, n - 1}]]
A350114
Number of Deutsch paths with peaks at odd height.
Original entry on oeis.org
1, 0, 1, 0, 2, 2, 6, 11, 26, 56, 129, 294, 684, 1599, 3774, 8961, 21411, 51421, 124081, 300667, 731337, 1785010, 4370431, 10731270, 26419202, 65198847, 161262046, 399692001, 992559011, 2469265633, 6153306125, 15357906136, 38388056063, 96086525311, 240821963528
Offset: 0
a(5) = 2 counts UUU12, UUU21, where U denotes an up-step and a down-step is denoted by its length, and a(6) = 6 counts UUUUU5, UUU1U3, UUU111, UUU3U1, U1UUU3, U1U1U1.
-
CoefficientList[Series[(1 + x + x^2 - Sqrt[(1 - 3 x + x^2) (1 + x + x^2)])/(2 x + 2 x^2), {x, 0, 20}], x]
A346787
Ordered lone-child-avoiding trees where vertices have decreasing subtree sizes.
Original entry on oeis.org
1, 0, 1, 1, 2, 3, 6, 10, 19, 35, 68, 128, 253, 489, 981, 1930, 3899, 7771, 15858, 31915, 65503, 133070, 274631, 561371, 1164240, 2393652, 4983614, 10299238, 21511537, 44637483, 93552858, 194809152, 409270569, 855199845, 1800958182, 3773297872, 7963655481
Offset: 1
-
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
b(n, i-1)+a(i)*b(n-i, min(n-i, i))))
end:
a:= n-> b(n-1, n-2):
seq(a(n), n=1..40); # Alois P. Heinz, Aug 05 2021
-
a[1] = 1; a[2] = 0;
a[n_] /; n >= 3 := a[n] = Apply[Plus, Map[Apply[Times, Map[a, #]] &, Rest[IntegerPartitions[n - 1]]]]
Table[a[n], {n, 20}]
A281874
Number of Dyck paths of semilength n with distinct peak heights.
Original entry on oeis.org
1, 1, 1, 3, 5, 13, 31, 71, 181, 447, 1111, 2799, 7083, 17939, 45563, 115997, 295827, 755275, 1929917, 4935701, 12631111, 32340473, 82837041, 212248769, 543978897, 1394481417, 3575356033, 9168277483, 23512924909, 60306860253, 154689354527, 396809130463
Offset: 0
a(3)=3 counts UUUDDD, UDUUDD, UUDDUD because the first has only one peak and the last two have peak heights 1,2 and 2,1 respectively.
A048285 counts Dyck paths with nondecreasing peak heights.
-
a[n_, k_] /; k == n := 1;
a[n_, k_] /; (k > n || k < 1) := 0;
a[n_, k_] :=
a[n, k] =
Sum[(Binomial[k - 1, i - 1] + i Binomial[k - 1, i - 2]) a[n - k,
i], {i, k + 1}];
Table[a[n, 1], {n, 28}]
A273821
Triangle read by rows: T(n,k) is the number of 123-avoiding permutations p of [n] (A000108) such that k is maximal with the property that the k largest entries of p, taken in order, avoid 132.
Original entry on oeis.org
1, 0, 2, 0, 1, 4, 0, 3, 3, 8, 0, 9, 10, 7, 16, 0, 28, 32, 25, 15, 32, 0, 90, 104, 84, 56, 31, 64, 0, 297, 345, 283, 195, 119, 63, 128, 0, 1001, 1166, 965, 676, 425, 246, 127, 256, 0, 3432, 4004, 3333, 2359, 1506, 894, 501, 255, 512
Offset: 1
For example, for the 123-avoiding permutation p = 42513, the 3 largest entries, 453, avoid 132 but the 4 largest entries, 4253, do not, and so p is counted by T(5,3).
Triangle begins:
1
0 2
0 1 4
0 3 3 8
0 9 10 7 16
0, 28, 32, 25, 15, 32
...
-
Map[Rest, Rest[Map[CoefficientList[#, y] &, CoefficientList[ Normal[Series[ c - 1 + ((1 - y) (1 - x y) (1 - (1 - x y) c ))/((1 - 2 x y) (1 - y + x y^2)) /. {c :> (1 - Sqrt[1 - 4 x])/(2 x)}, {x, 0, 10}, {y, 0, 10}]], x]]]]
u[1, 1] = 1; u[2, 2] = 2;
u[n_, 1] /; n > 1 := 0; u[n_, k_] /; n < 1 || k < 1 || k > n := 0;
u[n_, k_] /; n >= 3 && 2 <= k <= n := u[n, k] = 3 u[n - 1, k - 1] - 2 u[n - 2, k - 2] + u[n, k + 1] - 2 u[n - 1, k] + If[k == 2, CatalanNumber[n - 2], 0];
Table[u[n, k], {n, 10}, {k, n}]
A258041
Number of 312-avoiding derangements of {1,2,...,n}.
Original entry on oeis.org
1, 0, 1, 1, 4, 10, 31, 94, 303, 986, 3284, 11099, 38024, 131694, 460607, 1624451, 5771532, 20640334, 74246701, 268478962, 975436348, 3559204700, 13037907692, 47931423574, 176792821643, 654078238224, 2426705590840, 9026907769955
Offset: 0
a(4) = 4 counts 2143, 2341, 3421, 4321.
- Vaclav Kotesovec, Table of n, a(n) for n = 0..1000
- Aaron Robertson, Dan Saracino, and Doron Zeilberger, Refined Restricted Permutations, arXiv:math/0203033 [math.CO], 2002.
- Aaron Robertson, Dan Saracino, and Doron Zeilberger, Refined Restricted Permutations, Annals of Combinatorics 6 (2002) 427-444.
-
a[n_, k_] /; k >= n := CatalanNumber[n]
a[n_, k_] /; 0 <= k < n :=
a[n, k] = Sum[a[j - 1, k + 1] a[n - j, k] , {j, k}] + Sum[a[j - 1, k + 1] a[n - j, k],{j, k + 2, n}]
a[n_] := a[n, 0]
Table[a[n], {n, 0, 30}]
A242136
Number of strong triangulations of a fixed square with n interior vertices.
Original entry on oeis.org
0, 1, 6, 36, 228, 1518, 10530, 75516, 556512, 4194801, 32224114, 251565996, 1991331720, 15953808780, 129171585690, 1055640440268, 8698890336576, 72215877581844, 603532770013080, 5074488683389840
Offset: 0
The 6 triangulations for n=2 are as follows. Four have a central vertex joined to all 4 vertices of the square creating 4 triangular regions, one of which contains the second interior vertex. In these 4 cases, the central vertex has degree 5, the other interior vertex has degree 3. In the other 2 triangulations, both interior vertices have degree 4, an opposite pair a, c of vertices of the square both have degree 3 (so 1 interior edge), and the other 2 opposite vertices have degree 4.
Cf.
A000260 for triangulations of a triangle.
-
A242136:=n->24*binomial(4*n+3,n-1)/((3*n+5)*(n+2)): seq(A242136(n), n=0..30); # Wesley Ivan Hurt, Aug 16 2014
-
Table[24 Binomial[4n+3,n-1]/((3n+5)(n+2)), {n, 0, 15}]
A219836
Triangular array counting derangements by number of descents.
Original entry on oeis.org
1, 2, 0, 4, 4, 1, 8, 24, 12, 0, 16, 104, 120, 24, 1, 32, 392, 896, 480, 54, 0, 64, 1368, 5544, 5984, 1764, 108, 1, 128, 4552, 30384, 57640, 34520, 6048, 224, 0, 256, 14680, 153400, 470504, 495320, 180416, 19936, 448, 1
Offset: 2
Array begins
1
2, 0
4, 4, 1
8, 24, 12, 0
16, 104, 120, 24, 1
T(4,2) = 4 counts 2143, 3142, 3421, 4312.
Cf.
A008292. (analogous for permutations)
Row sums give
A000166.
A046739 counts derangements of [n] by number of excedances.
-
u[n_, 0] := 0; u[n_, k_] /; k == n-1 := If [EvenQ[n], 1, 0]; u[n_, k_] /; 1 <= k <= n - 2 := (n - k) u[n - 1, k - 1] + (k + 1) u[n - 1, k]; Table[u[n, k], {n, 2, 10}, {k, n - 1}]
A217922
Triangle read by rows: labeled trees counted by improper edges.
Original entry on oeis.org
1, 1, 2, 1, 6, 7, 3, 24, 46, 40, 15, 120, 326, 430, 315, 105, 720, 2556, 4536, 4900, 3150, 945, 5040, 22212, 49644, 70588, 66150, 38115, 10395, 40320, 212976, 574848, 1011500, 1235080, 1032570, 540540, 135135
Offset: 1
Triangle begins:
\ k 0....1....2....3....4......
n
1 |..1
2 |..1
3 |..2....1
4 |..6....7....3
5 |.24...46...40....15
6 |120..326..430...315...105
T(4,2) = 3 because we have 1->3->4->2, 1->4->2->3, 1->4->3->2, in each of which the last 2 edges are improper.
- G. C. Greubel, Rows n = 1..50 of the irregular triangle, flattened
- J. Fernando Barbero G., Jesús Salas, and Eduardo J. S. Villaseñor, Bivariate Generating Functions for a Class of Linear Recurrences. I. General Structure, arXiv:1307.2010 [math.CO], 2013-2014.
- William Y. C. Chen, Amy M. Fu, and Elena L. Wang, A Grammatical Calculus for the Ramanujan Polynomials, arXiv:2506.01649 [math.CO], 2025. See p. 3.
- Dominique Dumont and Armand Ramamonjisoa, Grammaire de Ramanujan et Arbres de Cayley, Electr. J. Combinatorics, Volume 3, Issue 2 (1996) R17 (see page 17).
- Matthieu Josuat-Vergès, Derivatives of the tree function, arXiv preprint arXiv:1310.7531 [math.CO], 2013.
- Lucas Randazzo, Arboretum for a generalization of Ramanujan polynomials, arXiv:1905.02083 [math.CO], 2019.
- Jiang Zeng, A Ramanujan sequence that refines the Cayley formula for trees, Ramanujan Journal 3 (1999) 1, 45-54, [DOI]
-
function T(n,k) // T = A217922
if k lt 0 or k gt n-2 then return 0;
elif k eq 0 then return Factorial(n-1);
else return (n-1)*T(n-1,k) + (n+k-3)*T(n-1,k-1);
end if;
end function;
[1] cat [T(n,k): k in [0..n-2], n in [2..12]]; // G. C. Greubel, Jan 10 2025
-
T[n_, k_]:= T[n,k]= If[k<0 || k>n-2, 0, If[k==0, (n-1)!, (n-1)*T[n-1,k] + (n+k-3)*T[n-1, k-1]]];
Join[{1}, Table[T[n,k], {n,12}, {k,0,n-2}]//Flatten] (* modified by G. C. Greubel, May 07 2019 *)
-
def T(n, k):
if k==0: return factorial(n-1)
elif (k<0 or k > n-2): return 0
else: return (n-1)*T(n-1, k) + (n+k-3)* T(n-1, k-1)
flatten([1] + [[T(n, k) for k in (0..n-2)] for n in (2..12)]) # G. C. Greubel, May 07 2019
Comments