cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-9 of 9 results.

A287822 Number T(n,k) of Dyck paths of semilength n such that the maximal number of peaks per level equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 7, 1, 1, 0, 13, 18, 9, 1, 1, 0, 31, 59, 29, 11, 1, 1, 0, 71, 193, 112, 38, 13, 1, 1, 0, 181, 616, 405, 163, 48, 15, 1, 1, 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1, 0, 1111, 6244, 5565, 2571, 925, 288, 71, 19, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(n,k) = 0 if k>n.

Examples

			. T(4,1) = 5:                                             /\
.                  /\        /\      /\        /\        /  \
.                 /  \    /\/  \    /  \      /  \/\    /    \
.              /\/    \  /      \  /    \/\  /      \  /      \ .
.
. T(4,2) = 7:       /\      /\        /\/\    /\        /\  /\
.              /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /  \/  \ .
.
.                          /\/\
.               /\/\      /    \
.              /    \/\  /      \  .
.
. T(4,3) = 1:   /\/\/\
.              /      \  .
.
. T(4,4) = 1:  /\/\/\/\  .
.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,    1;
  0,   3,    1,    1;
  0,   5,    7,    1,   1;
  0,  13,   18,    9,   1,   1;
  0,  31,   59,   29,  11,   1,  1;
  0,  71,  193,  112,  38,  13,  1,  1;
  0, 181,  616,  405, 163,  48, 15,  1, 1;
  0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1;
  ...
		

Crossrefs

Columns k=0-10 give: A000007, A281874 (for n>0), A288743, A288744, A288745, A288746, A288747, A288748, A288749, A288750, A288751.
Row sums give A000108.
T(2n,n) gives A287860.
Cf. A287847.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
          b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
           m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1, (m->
          add(b(n, m, j), j=1..m))(min(n, k)))
        end:
    T:= (n, k)-> A(n, k)- `if`(k=0, 0, A(n, k-1)):
    seq(seq(T(n, k), k=0..n), n=0..12);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];
    T[n_, k_] := A[n, k] - If[k==0, 0, A[n, k - 1]];
    Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)

Formula

T(n,k) = A287847(n,k) - A287847(n,k-1) for k>0, T(n,0) = A000007(n).

A287847 Number A(n,k) of Dyck paths of semilength n such that no level has more than k peaks; square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals.

Original entry on oeis.org

1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 5, 12, 13, 0, 1, 1, 2, 5, 13, 31, 31, 0, 1, 1, 2, 5, 14, 40, 90, 71, 0, 1, 1, 2, 5, 14, 41, 119, 264, 181, 0, 1, 1, 2, 5, 14, 42, 130, 376, 797, 447, 0, 1, 1, 2, 5, 14, 42, 131, 414, 1202, 2402, 1111, 0
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Examples

			. A(3,1) = 3:                    /\
.                 /\    /\      /  \
.              /\/  \  /  \/\  /    \   .
.
. A(3,2) = 4:                            /\
.                 /\    /\      /\/\    /  \
.              /\/  \  /  \/\  /    \  /    \   .
.
. A(3,3) = 5:                                    /\
.                         /\    /\      /\/\    /  \
.              /\/\/\  /\/  \  /  \/\  /    \  /    \   .
.
Square array A(n,k) begins:
  1,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   1,   1,   1,   1,   1,   1, ...
  0,  1,   2,   2,   2,   2,   2,   2, ...
  0,  3,   4,   5,   5,   5,   5,   5, ...
  0,  5,  12,  13,  14,  14,  14,  14, ...
  0, 13,  31,  40,  41,  42,  42,  42, ...
  0, 31,  90, 119, 130, 131, 132, 132, ...
  0, 71, 264, 376, 414, 427, 428, 429, ...
		

Crossrefs

Main diagonal and first two lower diagonals give: A000108, A001453, A120304.
Cf. A287822.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
          b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
           m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
        end:
    A:= proc(n, k) option remember; `if`(n=0, 1, (m->
          add(b(n, m, j), j=1..m))(min(n, k)))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..14);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
    A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];
    Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
    @cacheit
    def A(n, k):
        if n==0: return 1
        m=min(n, k)
        return sum([b(n, m , j) for j in range(1, m + 1)])
    for d in range(21): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 16 2017

Formula

A(n,k) = Sum_{j=0..k} A287822(n,j).

A288108 Number T(n,k) of Dyck paths of semilength n such that each level has exactly k peaks or no peaks; triangle T(n,k), n>=0, 0<=k<=n, read by rows.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 2, 1, 1, 0, 13, 5, 3, 1, 1, 0, 31, 15, 4, 4, 1, 1, 0, 71, 27, 10, 7, 5, 1, 1, 0, 181, 76, 36, 11, 11, 6, 1, 1, 0, 447, 196, 83, 22, 19, 16, 7, 1, 1, 0, 1111, 548, 225, 81, 32, 31, 22, 8, 1, 1, 0, 2799, 1388, 573, 235, 60, 56, 48, 29, 9, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 05 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k<=n. T(0,k) = 1 and T(n,k) = 0 if k > n > 0.

Examples

			. T(5,2) = 5:                                        /\/\
.                                       /\  /\      /    \
.      /\/\      /\/\      /\/\        /  \/  \    /      \
. /\/\/    \  /\/    \/\  /    \/\/\  /        \  /        \ .
.
. T(5,3) = 3:
.                                       /\/\/\
.              /\  /\/\    /\/\  /\    /      \
.             /  \/    \  /    \/  \  /        \ .
.
Triangle T(n,k) begins:
  1;
  0,   1;
  0,   1,  1;
  0,   3,  1,  1;
  0,   5,  2,  1,  1;
  0,  13,  5,  3,  1,  1;
  0,  31, 15,  4,  4,  1, 1;
  0,  71, 27, 10,  7,  5, 1, 1;
  0, 181, 76, 36, 11, 11, 6, 1, 1;
		

Crossrefs

Row sums give A288109.
T(2n,n) gives A156043.

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
          b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
           *binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
        end:
    T:= (n, k)-> b(n, k$2):
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
    T[n_, k_] := b[n, k, k];
    Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)

A287846 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak.

Original entry on oeis.org

1, 1, 0, 2, 0, 4, 6, 8, 24, 52, 96, 212, 504, 1072, 2352, 5288, 11928, 26800, 60336, 136304, 308928, 701248, 1593120, 3622016, 8245008, 18787360, 42836928, 97724384, 223052784, 509338816, 1163512032, 2658731648, 6077117376, 13893874624, 31771515648
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Comments

All terms with n > 1 are even.

Examples

			. a(1) = 1:    /\  .
.
. a(3) = 2:     /\       /\
.            /\/  \     /  \/\  .
.
. a(5) = 4:
.                /\       /\         /\       /\
.             /\/  \     /  \/\   /\/  \     /  \/\
.          /\/      \ /\/      \ /      \/\ /      \/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add(
           b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 23 2018, translated from Maple *)

A287845 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly two peaks.

Original entry on oeis.org

1, 0, 1, 0, 0, 3, 6, 0, 9, 54, 138, 207, 360, 1368, 4545, 11304, 25182, 61605, 173916, 498798, 1347417, 3497328, 9147060, 24630669, 67414590, 184065966, 498495303, 1345622436, 3642036804, 9900361107, 26982011250, 73570082760, 200540053395, 546660151722
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Examples

			. a(2) = 1:   /\/\  .
.
. a(5) = 3:
.
.               /\/\     /\/\     /\/\
.          /\/\/    \ /\/    \/\ /    \/\/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember;
          `if`(n=j or n=0, 1, add(b(n-j, i)*i*(i-1)/2
           *binomial(j-1, i-3), i=3..min(j+2, n-j)))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*i*(i - 1)/2* Binomial[j - 1, i - 3], {i, 3, Min[j + 2, n - j]}]];
    a[n_] := b[n, 2];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

A287843 Number of Dyck paths of semilength n such that each level with peaks has exactly two peaks.

Original entry on oeis.org

1, 0, 1, 1, 2, 5, 15, 27, 76, 196, 548, 1388, 3621, 9894, 27553, 75346, 205634, 563729, 1565409, 4370226, 12191929, 33980329, 94874987, 265668404, 745652478, 2095025688, 5889310438, 16565399257, 46633521554, 131388795335, 370434641340, 1044917168292
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Examples

			. a(2) = 1:   /\/\ .
.
. a(3) = 1:   /\/\
.            /    \ .
.
. a(4) = 2:              /\/\
.            /\  /\     /    \
.           /  \/  \   /      \ .
.
. a(5) = 5:                                               /\/\
.                                             /\  /\     /    \
.               /\/\     /\/\     /\/\       /  \/  \   /      \
.          /\/\/    \ /\/    \/\ /    \/\/\ /        \ /        \ .
		

Crossrefs

Column k=2 of A288108.

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j or n=0, 1,
          add(b(n-j, i)*(binomial(j-1, i-1) +i*(i-1)/2*
          binomial(j-1, i-3)), i=1..min(j+3, n-j)))
        end:
    a:= n-> b(n, 2):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*(Binomial[j - 1, i-1] + i*(i-1)/2*Binomial[j-1, i-3]), {i, 1, Min[j + 3, n - j]}]];
    a[n_] := b[n, 2];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)

A287901 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has at least one peak.

Original entry on oeis.org

1, 1, 1, 3, 6, 17, 49, 147, 459, 1476, 4856, 16282, 55466, 191474, 668510, 2356944, 8380944, 30025814, 108289093, 392871484, 1432934360, 5251507624, 19329771911, 71430479820, 264914270527, 985737417231, 3679051573264, 13769781928768, 51670641652576
Offset: 0

Views

Author

Alois P. Heinz, Jun 02 2017

Keywords

Examples

			. a(3) = 3:
.                   /\      /\
.      /\/\/\    /\/  \    /  \/\ .
.
. a(4) = 6:
.                    /\      /\        /\/\    /\        /\/\
.     /\/\/\/\  /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
		

Crossrefs

Column k=1 of A288386.

Programs

  • Mathematica
    b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]];  a[n_]:=If[n==0, 1, Sum[b[n, 1, j], {j, n}]];Table[a[n], {n, 0, 30}] (* Indranil Ghosh, Aug 09 2017 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
    def a(n): return 1 if n==0 else sum([b(n, 1, j) for j in range(1, n + 1)])
    print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 09 2017

A287963 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has one or two peaks.

Original entry on oeis.org

1, 1, 1, 2, 5, 10, 28, 71, 194, 532, 1495, 4256, 12176, 35251, 102664, 300260, 881909, 2599948, 7688164, 22788527, 67676144, 201308938, 599676445, 1788564038, 5339905904, 15956230705, 47713265536, 142763240666, 427390085963, 1280058256294, 3835332884686
Offset: 0

Views

Author

Alois P. Heinz, Jun 03 2017

Keywords

Examples

			. a(3) = 2:     /\      /\
.            /\/  \    /  \/\  .
.
. a(4) = 5:      /\      /\        /\/\    /\        /\/\
.           /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j, 1, add(
           b(n-j, i)*i*(binomial(j-1, i-2) +(i-1)/2*
           binomial(j-1, i-3)), i=2..min(j+3, n-j)))
        end:
    a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j, 1, Sum[b[n - j, i]*i*(Binomial[j - 1, i - 2] + (i - 1)/2*Binomial[j - 1, i - 3]), {i, 2, Min[j + 3, n - j]}]];
    a[n_] := If[n == 0, 1, b[n, 1] + b[n, 2]];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 29 2018, from Maple *)

A289020 Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.

Original entry on oeis.org

1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0

Views

Author

Alois P. Heinz, Jun 22 2017

Keywords

Comments

The semilengths of Dyck paths counted by a(n) are elements of the integer interval [2*n-1, n*(n+1)/2] = [A060747(n), A000217(n)] for n>0.

Examples

			. a(2) = 2:      /\    /\
.             /\/  \  /  \/\  .
		

Crossrefs

Column k=1 of A288972.

Programs

  • Maple
    b:= proc(n, j, v) option remember; `if`(n=j,
          `if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
           i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
        end:
    a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
    seq(a(n), n=0..18);
  • Mathematica
    b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Showing 1-9 of 9 results.