A287822
Number T(n,k) of Dyck paths of semilength n such that the maximal number of peaks per level equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 7, 1, 1, 0, 13, 18, 9, 1, 1, 0, 31, 59, 29, 11, 1, 1, 0, 71, 193, 112, 38, 13, 1, 1, 0, 181, 616, 405, 163, 48, 15, 1, 1, 0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1, 0, 1111, 6244, 5565, 2571, 925, 288, 71, 19, 1, 1
Offset: 0
. T(4,1) = 5: /\
. /\ /\ /\ /\ / \
. / \ /\/ \ / \ / \/\ / \
. /\/ \ / \ / \/\ / \ / \ .
.
. T(4,2) = 7: /\ /\ /\/\ /\ /\ /\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/ \ .
.
. /\/\
. /\/\ / \
. / \/\ / \ .
.
. T(4,3) = 1: /\/\/\
. / \ .
.
. T(4,4) = 1: /\/\/\/\ .
.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 3, 1, 1;
0, 5, 7, 1, 1;
0, 13, 18, 9, 1, 1;
0, 31, 59, 29, 11, 1, 1;
0, 71, 193, 112, 38, 13, 1, 1;
0, 181, 616, 405, 163, 48, 15, 1, 1;
0, 447, 1955, 1514, 648, 220, 59, 17, 1, 1;
...
Columns k=0-10 give:
A000007,
A281874 (for n>0),
A288743,
A288744,
A288745,
A288746,
A288747,
A288748,
A288749,
A288750,
A288751.
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1, (m->
add(b(n, m, j), j=1..m))(min(n, k)))
end:
T:= (n, k)-> A(n, k)- `if`(k=0, 0, A(n, k-1)):
seq(seq(T(n, k), k=0..n), n=0..12);
-
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];
T[n_, k_] := A[n, k] - If[k==0, 0, A[n, k - 1]];
Table[T[n, k], {n, 0, 12}, { k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
A287847
Number A(n,k) of Dyck paths of semilength n such that no level has more than k peaks; square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 5, 12, 13, 0, 1, 1, 2, 5, 13, 31, 31, 0, 1, 1, 2, 5, 14, 40, 90, 71, 0, 1, 1, 2, 5, 14, 41, 119, 264, 181, 0, 1, 1, 2, 5, 14, 42, 130, 376, 797, 447, 0, 1, 1, 2, 5, 14, 42, 131, 414, 1202, 2402, 1111, 0
Offset: 0
. A(3,1) = 3: /\
. /\ /\ / \
. /\/ \ / \/\ / \ .
.
. A(3,2) = 4: /\
. /\ /\ /\/\ / \
. /\/ \ / \/\ / \ / \ .
.
. A(3,3) = 5: /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \ .
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 3, 4, 5, 5, 5, 5, 5, ...
0, 5, 12, 13, 14, 14, 14, 14, ...
0, 13, 31, 40, 41, 42, 42, 42, ...
0, 31, 90, 119, 130, 131, 132, 132, ...
0, 71, 264, 376, 414, 427, 428, 429, ...
Columns k=0-10 give:
A000007,
A281874,
A287966,
A287967,
A287968,
A287969,
A287970,
A287971,
A287972,
A287973,
A287974.
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1, (m->
add(b(n, m, j), j=1..m))(min(n, k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
@cacheit
def A(n, k):
if n==0: return 1
m=min(n, k)
return sum([b(n, m , j) for j in range(1, m + 1)])
for d in range(21): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 16 2017
A288108
Number T(n,k) of Dyck paths of semilength n such that each level has exactly k peaks or no peaks; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 0, 1, 1, 0, 3, 1, 1, 0, 5, 2, 1, 1, 0, 13, 5, 3, 1, 1, 0, 31, 15, 4, 4, 1, 1, 0, 71, 27, 10, 7, 5, 1, 1, 0, 181, 76, 36, 11, 11, 6, 1, 1, 0, 447, 196, 83, 22, 19, 16, 7, 1, 1, 0, 1111, 548, 225, 81, 32, 31, 22, 8, 1, 1, 0, 2799, 1388, 573, 235, 60, 56, 48, 29, 9, 1, 1
Offset: 0
. T(5,2) = 5: /\/\
. /\ /\ / \
. /\/\ /\/\ /\/\ / \/ \ / \
. /\/\/ \ /\/ \/\ / \/\/\ / \ / \ .
.
. T(5,3) = 3:
. /\/\/\
. /\ /\/\ /\/\ /\ / \
. / \/ \ / \/ \ / \ .
.
Triangle T(n,k) begins:
1;
0, 1;
0, 1, 1;
0, 3, 1, 1;
0, 5, 2, 1, 1;
0, 13, 5, 3, 1, 1;
0, 31, 15, 4, 4, 1, 1;
0, 71, 27, 10, 7, 5, 1, 1;
0, 181, 76, 36, 11, 11, 6, 1, 1;
Columns k=0-10 give:
A000007,
A281874,
A287843,
A288110,
A288111,
A288112,
A288113,
A288114,
A288115,
A288116,
A288117.
-
b:= proc(n, k, j) option remember; `if`(n=j, 1, add(
b(n-j, k, i)*(binomial(j-1, i-1)+binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j)))
end:
T:= (n, k)-> b(n, k$2):
seq(seq(T(n, k), k=0..n), n=0..14);
-
b[n_, k_, j_] := b[n, k, j] = If[n == j, 1, Sum[b[n - j, k, i]*(Binomial[j - 1, i - 1] + Binomial[i, k]*Binomial[j - 1, i - 1 - k]), {i, 1, Min[j + k, n - j]}]];
T[n_, k_] := b[n, k, k];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
A287846
Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak.
Original entry on oeis.org
1, 1, 0, 2, 0, 4, 6, 8, 24, 52, 96, 212, 504, 1072, 2352, 5288, 11928, 26800, 60336, 136304, 308928, 701248, 1593120, 3622016, 8245008, 18787360, 42836928, 97724384, 223052784, 509338816, 1163512032, 2658731648, 6077117376, 13893874624, 31771515648
Offset: 0
. a(1) = 1: /\ .
.
. a(3) = 2: /\ /\
. /\/ \ / \/\ .
.
. a(5) = 4:
. /\ /\ /\ /\
. /\/ \ / \/\ /\/ \ / \/\
. /\/ \ /\/ \ / \/\ / \/\ .
-
b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add(
b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j)))
end:
a:= n-> b(n, 1):
seq(a(n), n=0..35);
-
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]];
a[n_] := b[n, 1];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 23 2018, translated from Maple *)
A287845
Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly two peaks.
Original entry on oeis.org
1, 0, 1, 0, 0, 3, 6, 0, 9, 54, 138, 207, 360, 1368, 4545, 11304, 25182, 61605, 173916, 498798, 1347417, 3497328, 9147060, 24630669, 67414590, 184065966, 498495303, 1345622436, 3642036804, 9900361107, 26982011250, 73570082760, 200540053395, 546660151722
Offset: 0
. a(2) = 1: /\/\ .
.
. a(5) = 3:
.
. /\/\ /\/\ /\/\
. /\/\/ \ /\/ \/\ / \/\/\ .
-
b:= proc(n, j) option remember;
`if`(n=j or n=0, 1, add(b(n-j, i)*i*(i-1)/2
*binomial(j-1, i-3), i=3..min(j+2, n-j)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..35);
-
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*i*(i - 1)/2* Binomial[j - 1, i - 3], {i, 3, Min[j + 2, n - j]}]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
A287843
Number of Dyck paths of semilength n such that each level with peaks has exactly two peaks.
Original entry on oeis.org
1, 0, 1, 1, 2, 5, 15, 27, 76, 196, 548, 1388, 3621, 9894, 27553, 75346, 205634, 563729, 1565409, 4370226, 12191929, 33980329, 94874987, 265668404, 745652478, 2095025688, 5889310438, 16565399257, 46633521554, 131388795335, 370434641340, 1044917168292
Offset: 0
. a(2) = 1: /\/\ .
.
. a(3) = 1: /\/\
. / \ .
.
. a(4) = 2: /\/\
. /\ /\ / \
. / \/ \ / \ .
.
. a(5) = 5: /\/\
. /\ /\ / \
. /\/\ /\/\ /\/\ / \/ \ / \
. /\/\/ \ /\/ \/\ / \/\/\ / \ / \ .
-
b:= proc(n, j) option remember; `if`(n=j or n=0, 1,
add(b(n-j, i)*(binomial(j-1, i-1) +i*(i-1)/2*
binomial(j-1, i-3)), i=1..min(j+3, n-j)))
end:
a:= n-> b(n, 2):
seq(a(n), n=0..35);
-
b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*(Binomial[j - 1, i-1] + i*(i-1)/2*Binomial[j-1, i-3]), {i, 1, Min[j + 3, n - j]}]];
a[n_] := b[n, 2];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 25 2018, translated from Maple *)
A287901
Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has at least one peak.
Original entry on oeis.org
1, 1, 1, 3, 6, 17, 49, 147, 459, 1476, 4856, 16282, 55466, 191474, 668510, 2356944, 8380944, 30025814, 108289093, 392871484, 1432934360, 5251507624, 19329771911, 71430479820, 264914270527, 985737417231, 3679051573264, 13769781928768, 51670641652576
Offset: 0
. a(3) = 3:
. /\ /\
. /\/\/\ /\/ \ / \/\ .
.
. a(4) = 6:
. /\ /\ /\/\ /\ /\/\
. /\/\/\/\ /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; a[n_]:=If[n==0, 1, Sum[b[n, 1, j], {j, n}]];Table[a[n], {n, 0, 30}] (* Indranil Ghosh, Aug 09 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i)])*b(n - j, k, i) for i in range(1, n - j + 1)])
def a(n): return 1 if n==0 else sum([b(n, 1, j) for j in range(1, n + 1)])
print([a(n) for n in range(31)]) # Indranil Ghosh, Aug 09 2017
A287963
Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has one or two peaks.
Original entry on oeis.org
1, 1, 1, 2, 5, 10, 28, 71, 194, 532, 1495, 4256, 12176, 35251, 102664, 300260, 881909, 2599948, 7688164, 22788527, 67676144, 201308938, 599676445, 1788564038, 5339905904, 15956230705, 47713265536, 142763240666, 427390085963, 1280058256294, 3835332884686
Offset: 0
. a(3) = 2: /\ /\
. /\/ \ / \/\ .
.
. a(4) = 5: /\ /\ /\/\ /\ /\/\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
-
b:= proc(n, j) option remember; `if`(n=j, 1, add(
b(n-j, i)*i*(binomial(j-1, i-2) +(i-1)/2*
binomial(j-1, i-3)), i=2..min(j+3, n-j)))
end:
a:= n-> `if`(n=0, 1, b(n, 1)+b(n, 2)):
seq(a(n), n=0..35);
-
b[n_, j_] := b[n, j] = If[n == j, 1, Sum[b[n - j, i]*i*(Binomial[j - 1, i - 2] + (i - 1)/2*Binomial[j - 1, i - 3]), {i, 2, Min[j + 3, n - j]}]];
a[n_] := If[n == 0, 1, b[n, 1] + b[n, 2]];
Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 29 2018, from Maple *)
A289020
Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.
Original entry on oeis.org
1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0
. a(2) = 2: /\ /\
. /\/ \ / \/\ .
-
b:= proc(n, j, v) option remember; `if`(n=j,
`if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
end:
a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
seq(a(n), n=0..18);
-
b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Showing 1-9 of 9 results.
Comments