cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A281874 Number of Dyck paths of semilength n with distinct peak heights.

Original entry on oeis.org

1, 1, 1, 3, 5, 13, 31, 71, 181, 447, 1111, 2799, 7083, 17939, 45563, 115997, 295827, 755275, 1929917, 4935701, 12631111, 32340473, 82837041, 212248769, 543978897, 1394481417, 3575356033, 9168277483, 23512924909, 60306860253, 154689354527, 396809130463
Offset: 0

Views

Author

David Callan, Jan 31 2017

Keywords

Comments

a(n) is the number of Dyck paths of length 2n with no two peaks at the same height. A peak is a UD, an up-step U=(1,1) immediately followed by a down-step D=(1,-1).
In the Mathematica recurrence below, a(n,k) is the number of Dyck paths of length 2n with all peaks at distinct heights except that there are k peaks at the maximum peak height. Thus a(n)=a(n,1). The recurrence is based on the following simple observation. Paths counted by a(n,k) are obtained from paths counted by a(n-k,i) for some i, 1<=i<=k+1, by inserting runs of one or more contiguous peaks at each of the existing peak vertices at the maximum peak height, except that (at most) one such existing peak may be left undisturbed, and so that a total of k new peaks are added.
It appears that lim a(n)/a(n-1) as n approaches infinity exists and is approximately 2.5659398.

Examples

			a(3)=3 counts UUUDDD, UDUUDD, UUDDUD because the first has only one peak and the last two have peak heights 1,2 and 2,1 respectively.
		

Crossrefs

A048285 counts Dyck paths with nondecreasing peak heights.
Column k=1 of A287847, A288108.

Programs

  • Mathematica
    a[n_, k_] /; k == n := 1;
    a[n_, k_] /; (k > n || k < 1) := 0;
    a[n_, k_] :=
    a[n, k] =
      Sum[(Binomial[k - 1, i - 1] + i Binomial[k - 1, i - 2]) a[n - k,
         i], {i, k + 1}];
    Table[a[n, 1], {n, 28}]

A287846 Number of Dyck paths of semilength n such that each positive level up to the highest nonempty level has exactly one peak.

Original entry on oeis.org

1, 1, 0, 2, 0, 4, 6, 8, 24, 52, 96, 212, 504, 1072, 2352, 5288, 11928, 26800, 60336, 136304, 308928, 701248, 1593120, 3622016, 8245008, 18787360, 42836928, 97724384, 223052784, 509338816, 1163512032, 2658731648, 6077117376, 13893874624, 31771515648
Offset: 0

Views

Author

Alois P. Heinz, Jun 01 2017

Keywords

Comments

All terms with n > 1 are even.

Examples

			. a(1) = 1:    /\  .
.
. a(3) = 2:     /\       /\
.            /\/  \     /  \/\  .
.
. a(5) = 4:
.                /\       /\         /\       /\
.             /\/  \     /  \/\   /\/  \     /  \/\
.          /\/      \ /\/      \ /      \/\ /      \/\ .
		

Crossrefs

Programs

  • Maple
    b:= proc(n, j) option remember; `if`(n=j or n=0, 1, add(
           b(n-j, i)*binomial(j-1, i-2)*i, i=1..min(j+2, n-j)))
        end:
    a:= n-> b(n, 1):
    seq(a(n), n=0..35);
  • Mathematica
    b[n_, j_] := b[n, j] = If[n == j || n == 0, 1, Sum[b[n - j, i]*Binomial[j - 1, i - 2]*i, {i, 1, Min[j + 2, n - j]}]];
    a[n_] := b[n, 1];
    Table[a[n], {n, 0, 35}] (* Jean-François Alcover, May 23 2018, translated from Maple *)

A288972 Number A(n,k) of Dyck paths having exactly k peaks in each of the levels 1,...,n and no other peaks; square array A(n,k), n>=0, k>=0, read by antidiagonals.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 9, 10, 1, 1, 1, 44, 471, 92, 1, 1, 1, 225, 27076, 82899, 1348, 1, 1, 1, 1182, 1713955, 102695344, 36913581, 28808, 1, 1, 1, 6321, 114751470, 147556480375, 1565018426896, 34878248649, 845800, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 20 2017

Keywords

Comments

The semilengths of Dyck paths counted by A(n,k) are elements of the integer interval [k*n+n-1, k*n*(n+1)/2] for n,k>0.

Examples

			. A(3,1) = 10:
.
.        /\        /\          /\        /\
.     /\/  \      /  \/\    /\/  \      /  \/\
.  /\/      \  /\/      \  /      \/\  /      \/\
.
.                /\        /\                /\
.           /\  /  \      /  \  /\    /\    /  \
.        /\/  \/    \  /\/    \/  \  /  \/\/    \
.
.              /\        /\            /\
.         /\  /  \      /  \    /\    /  \  /\
.        /  \/    \/\  /    \/\/  \  /    \/  \/\  .
.
Square array A(n,k) begins:
  1,    1,        1,             1,                 1, ...
  1,    1,        1,             1,                 1, ...
  1,    2,        9,            44,               225, ...
  1,   10,      471,         27076,           1713955, ...
  1,   92,    82899,     102695344,      147556480375, ...
  1, 1348, 36913581, 1565018426896, 81072887990665625, ...
		

Crossrefs

Columns k=0-2 give: A000012, A289020, A289054.
Rows n=0+1,2,3 give: A000012, A176479, A289030.
Main diagonal gives A288940.

Programs

  • Maple
    b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
          `if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)*
           binomial(j-1, i-1-k)), i=1..min(j+k, n-j))))
        end:
    A:= proc(n, k) option remember; `if`(n=0 or k=0, 1,
          add(b(w, k, k, n), w=k*n+n-1..k*n*(n+1)/2))
        end:
    seq(seq(A(n, d-n), n=0..d), d=0..10);
  • Mathematica
    b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; A[n_, k_]:=A[n, k]=If[n==0 || k==0, 1, Sum[b[w, k, k, n], {w, k*n + n - 1, k*n*(n + 1)/2}]]; Table[A[n, d - n], {d, 0, 10}, {n, 0, d}] // Flatten (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Showing 1-3 of 3 results.