Original entry on oeis.org
1, 2, 9, 44, 225, 1182, 6321, 34232, 187137, 1030490, 5707449, 31760676, 177435297, 994551222, 5590402785, 31500824304, 177880832001, 1006362234162, 5703029112297, 32367243171740, 183945502869345, 1046646207221582, 5961966567317649, 33995080211156904
Offset: 0
- Alois P. Heinz, Table of n, a(n) for n = 0..1000
- Sergi Elizalde, Rigoberto Flórez, and José Luis Ramírez, Enumerating symmetric peaks in non-decreasing Dyck paths, Ars Mathematica Contemporanea (2021).
- Juan B. Gil, Emma G. Hoover, and Jessica A. Shearer, Bijections between colored compositions, Dyck paths, and polygon partitions, arXiv:2403.04575 [math.CO], 2024.
- Milan Janjić, On Restricted Ternary Words and Insets, arXiv:1905.04465 [math.CO], 2019.
- V. V. Kruchinin and D. V. Kruchinin, A Method for Obtaining Generating Function for Central Coefficients of Triangles, arXiv preprint arXiv:1206.0877 [math.CO], 2012, and J. Int. Seq. 15 (2012) #12.9.3
-
a:= proc(n) option remember; `if`(n<2, n+1,
(6*n-3)/n*a(n-1) -(n-2)/(n-1)*a(n-2))
end:
seq(a(n), n=0..25); # Alois P. Heinz, Jun 22 2017
-
a[n_] := Sum[Binomial[n - 1, k - 1]*Binomial[n + k, n], {k, 0, n}]; Array[a, 25, 0] (* or *)
CoefficientList[ Series[1/4 - (x - 3)/(4 Sqrt[x^2 - 6x +1]), {x, 0, 25}], x] (* Robert G. Wilson v, Dec 31 2016 *)
Table[(n+1)Hypergeometric2F1[1-n, -n, 2, 2], {n,0,21}] (* Peter Luschny, Jan 02 2017 *)
A289020
Number of Dyck paths having exactly one peak in each of the levels 1,...,n and no other peaks.
Original entry on oeis.org
1, 1, 2, 10, 92, 1348, 28808, 845800, 32664944, 1605553552, 97868465696, 7245440815264, 640359291096512, 66598657958731840, 8051483595083729024, 1119653568781387712128, 177465810459239319017216, 31804047327185301634148608, 6398867435594240638421950976
Offset: 0
. a(2) = 2: /\ /\
. /\/ \ / \/\ .
-
b:= proc(n, j, v) option remember; `if`(n=j,
`if`(v=1, 1, 0), `if`(v<2, 0, add(b(n-j, i, v-1)*
i*binomial(j-1, i-2), i=1..min(j+1, n-j))))
end:
a:= n-> `if`(n=0, 1, add(b(w, 1, n), w=2*n-1..n*(n+1)/2)):
seq(a(n), n=0..18);
-
b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1]*i*Binomial[j - 1, i - 2], {i, Min[j + 1, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 1, n], {w, 2*n - 1, n*(n + 1)/2}]]; Table[a[n], {n, 0, 18}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
A288940
Number of Dyck paths having n (positive) levels and exactly n peaks per level.
Original entry on oeis.org
1, 1, 9, 27076, 147556480375, 4711342006036190504484, 2162932174406679548553402518043252929, 29605698225102450501737027784037791564430800582087459328, 22346336234943531646124131709622442581521043809236751640919325993842966011809319
Offset: 0
. a(1) = 1: /\ .
.
. a(2) = 9: /\/\ /\/\ /\/\ /\ /\
. /\/\/ \ /\/ \/\ / \/\/\ /\/\/ \/ \
.
. /\ /\ /\ /\ /\ /\ /\ /\ /\ /\
. /\/ \/\/ \ /\/ \/ \/\ / \/\/\/ \ / \/\/ \/\ / \/ \/\/\ .
-
b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
`if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)
*binomial(j-1, i-1-k)), i=1..min(j+k, n-j))))
end:
a:= n-> `if`(n=0, 1, add(b(k, n$3), k=n^2+n-1..n^2*(n+1)/2)):
seq(a(n), n=0..7);
-
b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[k, n, n, n], {k, n^2 + n - 1, n^2*(n + 1)/2}]]; Table[a[n], {n, 0, 8}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
A289030
Number of Dyck paths having exactly n peaks in each of the levels 1,2,3 and no other peaks.
Original entry on oeis.org
1, 10, 471, 27076, 1713955, 114751470, 7969151855, 567878871304, 41247976697019, 3040572724077010, 226777538499783271, 17076122335343354700, 1296037531424347164115, 99025149551454886937590, 7609414766853344476768095, 587623058661705739915402256
Offset: 0
. a(1) = 10:
.
. /\ /\ /\ /\
. /\/ \ / \/\ /\/ \ / \/\
. /\/ \ /\/ \ / \/\ / \/\
.
. /\ /\ /\
. /\ / \ / \ /\ /\ / \
. /\/ \/ \ /\/ \/ \ / \/\/ \
.
. /\ /\ /\
. /\ / \ / \ /\ / \ /\
. / \/ \/\ / \/\/ \ / \/ \/\ .
-
b:= proc(n, k, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
`if`(v<2, 0, add(b(n-j, k, i, v-1)*(binomial(i, k)*
binomial(j-1, i-1-k)), i=1..min(j+k, n-j))))
end:
a:= n-> `if`(n=0, 1, add(b(w, n$2, 3), w=3*n+2..6*n)):
seq(a(n), n=0..15);
-
b[n_, k_, j_, v_]:=b[n, k, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, k, i, v - 1] Binomial[i, k] Binomial[j - 1, i - 1 - k], {i, Min[j + k, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, n, n, 3], {w, 3n + 2, 6n}]]; Table[a[n], {n, 0, 15}] (* Indranil Ghosh, Jul 06 2017, after maple code *)
A289054
Number of Dyck paths having exactly two peaks in each of the levels 1,...,n and no other peaks.
Original entry on oeis.org
1, 1, 9, 471, 82899, 36913581, 34878248649, 62045165964951, 190543753640526939, 945931782247964900901, 7209377339218632463758129, 80920117567254715984058542191, 1292645840976784584918218615760819, 28557854803885245556927129118200208781
Offset: 0
. a(2) = 9: /\/\ /\/\ /\/\ /\ /\
. /\/\/ \ /\/ \/\ / \/\/\ /\/\/ \/ \
.
. /\ /\ /\ /\ /\ /\ /\ /\ /\ /\
. /\/ \/\/ \ /\/ \/ \/\ / \/\/\/ \ / \/\/ \/\ / \/ \/\/\ .
-
b:= proc(n, j, v) option remember; `if`(n=j, `if`(v=1, 1, 0),
`if`(v<2, 0, add(b(n-j, i, v-1)*(binomial(i, 2)*
binomial(j-1, i-3)), i=1..min(j+2, n-j))))
end:
a:= n-> `if`(n=0, 1, add(b(w, 2, n), w=3*n-1..n*(n+1))):
seq(a(n), n=0..15);
-
b[n_, j_, v_]:=b[n, j, v]=If[n==j, If[v==1, 1, 0], If[v<2, 0, Sum[b[n - j, i, v - 1] Binomial[i, 2] Binomial[j - 1, i - 3], {i, Min[j + 2, n - j]}]]]; a[n_]:=If[n==0, 1, Sum[b[w, 2, n], {w, 3*n - 1, n(n + 1)}]]; Table[a[n], {n, 0, 15}] (* Indranil Ghosh, Jul 06 2017, after Maple code *)
Showing 1-5 of 5 results.
Comments