A226952 Triangle of coefficients of Faber polynomials for (3*x - sqrt(x^2 - 4*x))/2.
0, -1, 1, -1, -2, 1, -4, 0, -3, 1, -13, -4, 2, -4, 1, -46, -10, -5, 5, -5, 1, -166, -36, -6, -8, 9, -6, 1, -610, -126, -28, 0, -14, 14, -7, 1, -2269, -456, -92, -24, 10, -24, 20, -8, 1, -8518, -1674, -333, -63, -27, 27, -39, 27, -9, 1
Offset: 0
Examples
Triangle begins as: 0; -1, 1; -1, -2, 1; -4, 0, -3, 1; -13, -4, 2, -4, 1; -46, -10, -5, 5, -5, 1;
Links
- G. C. Greubel, Rows n = 0..100 of triangle, flattened
Programs
-
Magma
[[n eq 0 and k eq 0 select 0 else k eq n select 1 else n*(&+[ (-1)^j*j*Binomial(j+k,k)*Binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)): j in [1..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
-
Mathematica
T[n_,k_]:= If[n==k==0, 0, If[k==n, 1, n*Sum[(-1)^j*j*Binomial[j+k, k]* Binomial[2*n-2*k-j-1, n-k-1]/((j+k)*(n-k)), {j, 1, n-k}]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
-
Maxima
T(n,k):=if n=0 and k=0 then 0 else if n=k then 1 else n*sum(binomial(i+k,k)*(i)*binomial(2*(n-k)-i-1,n-k-1)*(-1)^(i)/((i+k)*(n-k)),i,1,n-k);
-
PARI
{T(n,k) = if(n==0 && k==0, 0, if(k==n, 1, n*sum(j=1,n-k, (-1)^j*j* binomial(j+k, k)*binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)))))}; \\ G. C. Greubel, Apr 29 2019
-
Sage
def T(n, k): if (k==n==0): return 0 elif (k==n): return 1 else: return n*sum((-1)^j*j* binomial(j+k, k)*binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)) for j in (1..n-k)) [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019
Formula
A220288 G.f. A(x) satisfies A(A(A(x))) = x+3*x^2+9*x^3.
1, 1, 1, -8, 28, -26, -386, 2701, -5399, -42155, 358615, -354212, -10419524, 52825312, 236952352, -3103798967, -3013742105, 176201013745, -164790760103, -11763898514324, 27830312919316, 992172068848126, -3681957974446718, -103284064687144985, 528045230825074855
Offset: 1
Keywords
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..200
Programs
-
Mathematica
t[n_, m_] := t[n, m] = 1/3*(3^(n - m)* Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[k, m]*Sum[t[n, i]*t[i, k], {i, k, n}], {k, m + 1, n - 1}] - Sum[t[n, i]*t[i, m], {i, m + 1, n - 1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 25}] (* Jean-François Alcover, Feb 22 2013 *)
-
Maxima
T(n, m):=if n=m then 1 else 1/3*(3^(n-m)*sum(binomial(j,n-3*m+2*j)*binomial(m,j),j,0,m)-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-sum(T(n, i)*T(i, m), i, m+1, n-1)); makelist(T(n,1),n,1,7);
Formula
a(n)=T(n,1), T(n, m)=1/3*(3^(n-m)*sum(j=0..m, binomial(j,n-3*m+2*j)*binomial(m,j))-sum(k=m+1..n-1, T(k, m)*sum(, i=k..n, T(n, i)*T(i, k)))-sum(i=m+1..n-1, T(n, i)*T(i, m))), T(n,n)=1.
A220112 E.g.f. A(x) satisfies A(A(x)) = (1/4)*log(1/(1-4*x)).
1, 2, 10, 80, 872, 11928, 195072, 3702080, 80065792, 1950808000, 53016791360, 1587229842688, 51619520360960, 1808576831681536, 68562454975587328, 2830905156661645312, 124395772159835529216, 5504660984739184156672, 250011277837808237105152, 14799530615476409472303104
Offset: 1
Keywords
References
- Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.
Links
- Vladimir Reshetnikov, Table of n, a(n) for n = 1..281
- Gottfried Helms, Coefficients for fractional iterates exp(x)-1
- Dmitry Kruchinin and Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986 [math.CO], 2013
Programs
-
Maple
A := proc(n, m) option remember; if n = m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - add(A(n,k)*A(k,m), k =m+1..n-1)) fi end: a := n -> A(n,1): seq(a(n), n = 1..23); # Peter Luschny, Aug 15 2021
-
Mathematica
t[n_, m_] := t[n, m] = 1/2*(4^(n - m)*(-1)^(n - m)*StirlingS1[n, m] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 20}] (* Jean-François Alcover, Feb 22 2013 *)
-
Maxima
T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*stirling1(n,m)-sum(T(n,i)*T(i,m),i,m+1,n-1)); makelist((T(n,1)),n,1,10);
Formula
a(n) = T(n,1), T(n,m) = (1/2)*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - Sum_{i=m+1..n-1} T(n,i)*T(i,m)), T(n,n)=1.
Extensions
More terms from Vladimir Reshetnikov, Aug 15 2021
A220113 E.g.f. A(x)=sum{n>0, a(n)x^(2*n-1)/(2*n-1)!} satisfies A(A(x))=sin(2*x)/2.
1, -2, -12, -424, -29808, -2966816, -237449920, 76118167936, 84317834342656, 53499781544238592, 20080969948883956736, -10740526073453596649472, -31099457241702481710116864
Offset: 1
Keywords
Links
- Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986
Crossrefs
Cf. A048602.
Programs
-
Mathematica
t[n_, m_] := t[n, m] = 1/2*(2^(n - 2*m)*(((-1)^(n-m) + 1)* Sum[(2*i - m)^n*Binomial[m, i]*(-1)^((n+m)/2 - i), {i, 0, m/2}])/m! - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[ t[2*n-1, 1], {n, 1, 13}] (* Jean-François Alcover, Feb 22 2013 *)
-
Maxima
T(n,m):=if n=m then 1 else 1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i),i,0,m/2))/m!-sum(T(n,i)*T(i,m),i,m+1,n-1)); makelist(((T3(2*n-1,1))),n,1,7);
Formula
a(n)=T(2*n-1,1), T(n,m)=1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i)))/m!-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1.
A220110 Expansion of A(x) satisfying A(A(x)) = x+2x^2+4x^3.
1, 1, 1, -3, 5, 1, -39, 117, 13, -1311, 3441, 9525, -78603, 16961, 1520521, -3649323, -28760163, 144787265, 601582689, -5374096875, -15170850555, 225456060897, 461284881657, -11141961064971, -15963771799251, 647040052660257, 569313149887057
Offset: 1
Keywords
Examples
First column of 1; 1,1; 1,2,1; -3,3,3,1; 5,-4,6,4,1; 1,5,-2,10,5,1; -39,6,3,4,15,6,1; 117,-57,9,3,15,21,7,1; 13,128,-56,8,10,32,28,8,1; -1311,201,84,-44,6,30,56,36,9,1;
Links
- Seiichi Manyama, Table of n, a(n) for n = 1..552
- Dmitry Kruchinin, Vladimir Kruchinin, Method for solving an iterative functional equation $A^{2^n}(x)=F(x)$, arXiv:1302.1986
Programs
-
Mathematica
t[n_, m_] := t[n, m] = 1/2*(2^(n-m)*Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[n, k]*t[k, m], {k, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 27}] (* Jean-François Alcover, Feb 22 2013 *)
-
Maxima
T(n,m):=if n=m then 1 else 1/2*(2^(n-m)*sum(binomial(j,n-3*m+2*j)*binomial(m,j),j,0,m)-sum(T(n,k)*T(k,m),k,m+1,n-1)); makelist((T(n,1)),n,1,10);
Formula
a(n)=T(n,1), 2*T(n,m)= 2^(n-m) *sum_{j=0..m} binomial(j,n-3*m+2*j) *binomial(m,j) -sum_{k=m+1..n-1} T(n,k)*T(k,m), n>m, T(n,n)=1.
A200144 The number of multinomial coefficients, based on a set of partitions of n into m positions, divisible by m entirely.
1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 64, 100, 121, 167, 213, 296, 354, 489, 594, 776, 964, 1254, 1511, 1951, 2378, 2986, 3643, 4564, 5483, 6841, 8245, 10099, 12190, 14862, 17783, 21636, 25849, 31184
Offset: 1
Keywords
Comments
If n is prime, then the number of multinomial coefficients, based on a set of partitions of n at position m, divided by m entirely, less 1 than the number of partitions of numbers for all m.
Examples
n=7; Set of partitions of n into m=4 parts [1,1,1,4] [1,1,2,3] [1,2,2,2] number of different parts [3,1] [2,1,1] [1,3] Multinomial coefficient, divisible by m 4!/(4*(1!*3!))=1 4!/(4*(2!*1!*1!))=2 4!/(4*(1!*3!))=1 Set of partitions of n into m=7 parts [1,1,1,1,1,1,1] number of different parts [7] Multinomial coefficient, divisible by m 7!/(7*(7!))=1/7
Links
Programs
-
Maxima
/* count number of partitions of n into m parts */ b(n, m):=if n
A190667 Expansion of (1+2*x)/(1-x^4-2*x^3-2*x^2-x).
1, 3, 5, 13, 30, 69, 160, 371, 859, 1990, 4610, 10679, 24738, 57306, 132750, 307517, 712367, 1650207, 3822725, 8855390, 20513621, 47520058, 110080805, 255003553, 590718900, 1368407674, 3169933385, 7343190086, 17010591104, 39405245720
Offset: 0
Keywords
Links
- Harvey P. Dale, Table of n, a(n) for n = 0..1000
- Index entries for linear recurrences with constant coefficients, signature (1,2,2,1).
Programs
-
Magma
[ (n+1)*&+[ (Binomial(k, n-k+1)*Fibonacci(k))/k: k in [1..n+1] ]: n in [0..35] ]; // Klaus Brockhaus, May 17 2011
-
Magma
[ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 5 else n eq 4 select 13 else Self(n-1)+2*Self(n-2)+2*Self(n-3)+Self(n-4): n in [1..36] ]; // Klaus Brockhaus, Jun 01 2011
-
Mathematica
CoefficientList[Series[(1+2x)/(1-x^4-2x^3-2x^2-x),{x,0,40}],x] (* or *) LinearRecurrence[ {1,2,2,1},{1,3,5,13},40] (* Harvey P. Dale, Feb 25 2023 *)
-
Maxima
a(n):=(n+1)*sum(binomial(k,n-k+1)*fib(k)/k,k,1,n+1);makelist(a(n),n,0,35);
-
Maxima
a(n):=if n<0 then 0 else if n=0 then 1 else if n=1 then 3 else if n=2 then 5 else if n=3 then 13 else a(n-1)+2*a(n-2)+2*a(n-3)+a(n-4);
Formula
a(n) = (n+1)*sum(k=1..n+1, binomial(k, n-k+1)*A000045(k)/k).
a(n) = a(n-1)+2*a(n-2)+2*a(n-3)+a(n-4), a(0)=1, a(1)=3, a(2)=5, a(3)=13.
A190733 Expansion of (4*x+2)/(1+sqrt(1-4*x-4*x^2)).
1, 3, 5, 15, 49, 175, 657, 2559, 10241, 41855, 173953, 732927, 3123457, 13439743, 58307841, 254779391, 1120247809, 4952864767, 22005184513, 98196398079, 439923990529, 1977917169663, 8921667641345, 40361657696255, 183092192411649, 832634240106495, 3795237359190017
Offset: 0
Keywords
Links
- Vincenzo Librandi, Table of n, a(n) for n = 0..100
Programs
-
Mathematica
CoefficientList[Series[(4x+2)/(1+Sqrt[1-4x-4x^2]),{x,0,40}],x] (* Harvey P. Dale, Mar 20 2015 *)
-
Maxima
a(n):=(n+1)*sum(binomial(k,n-k+1)/k*binomial(2*k-2,k-1)/k,k,1,(n+1))
-
PARI
x='x+O('x^66); /* that many terms */ Vec((4*x+2)/(1+sqrt(1-4*x-4*x^2))) /* show terms */ /* Joerg Arndt, May 27 2011 */
Formula
a(n) = (n+1)*sum(k=1..n+1,binomial(k,n-k+1)*Catalan(k-1)/k).
D-finite with recurrence: (n+1)*a(n) +(-n+1)*a(n-1) +14*(-n+2)*a(n-2) +20*(-n+3)*a(n-3) +8*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 25 2020
Comments