cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Dmitry Kruchinin

Dmitry Kruchinin's wiki page.

Dmitry Kruchinin has authored 8 sequences.

A226952 Triangle of coefficients of Faber polynomials for (3*x - sqrt(x^2 - 4*x))/2.

Original entry on oeis.org

0, -1, 1, -1, -2, 1, -4, 0, -3, 1, -13, -4, 2, -4, 1, -46, -10, -5, 5, -5, 1, -166, -36, -6, -8, 9, -6, 1, -610, -126, -28, 0, -14, 14, -7, 1, -2269, -456, -92, -24, 10, -24, 20, -8, 1, -8518, -1674, -333, -63, -27, 27, -39, 27, -9, 1
Offset: 0

Author

Dmitry Kruchinin, Jun 24 2013

Keywords

Examples

			Triangle begins as:
    0;
   -1,   1;
   -1,  -2,  1;
   -4,   0, -3,  1;
  -13,  -4,  2, -4,  1;
  -46, -10, -5,  5, -5,  1;
		

Programs

  • Magma
    [[n eq 0 and k eq 0 select 0 else k eq n select 1 else n*(&+[ (-1)^j*j*Binomial(j+k,k)*Binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)): j in [1..n-k]]): k in [0..n]]: n in [0..10]]; // G. C. Greubel, Apr 29 2019
    
  • Mathematica
    T[n_,k_]:= If[n==k==0, 0, If[k==n, 1, n*Sum[(-1)^j*j*Binomial[j+k, k]* Binomial[2*n-2*k-j-1, n-k-1]/((j+k)*(n-k)), {j, 1, n-k}]]]; Table[T[n,k], {n,0,10}, {k,0,n}]//Flatten (* G. C. Greubel, Apr 29 2019 *)
  • Maxima
    T(n,k):=if n=0 and k=0 then 0 else if n=k then 1 else n*sum(binomial(i+k,k)*(i)*binomial(2*(n-k)-i-1,n-k-1)*(-1)^(i)/((i+k)*(n-k)),i,1,n-k);
    
  • PARI
    {T(n,k) = if(n==0 && k==0, 0, if(k==n, 1, n*sum(j=1,n-k, (-1)^j*j* binomial(j+k, k)*binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)))))}; \\ G. C. Greubel, Apr 29 2019
    
  • Sage
    def T(n, k):
      if (k==n==0): return 0
      elif (k==n): return 1
      else: return n*sum((-1)^j*j* binomial(j+k, k)*binomial(2*n-2*k-j-1, n-k-1)/((j+k)*(n-k)) for j in (1..n-k))
    [[T(n, k) for k in (0..n)] for n in (0..10)] # G. C. Greubel, Apr 29 2019

Formula

G.f.: log(1 + (1 - sqrt(1-4*t))/2 - t*x) = Sum_{n>0} Sum_{k=0..n} T(n,k) * x^k * t^n/n.
T(n,k) = n*Sum_{j=1..n-k} binomial(j+k,k)*(j)*binomial(2*(n-k)-j-1, n-k-1)*(-1)^j/((j+k)*(n-k)), k
(-1)^(n+1) * Sum_{k=0..n} T(n,k) = 2*A181933(n).
T(n,0) = -A026641(n-1), n>0.

A220288 G.f. A(x) satisfies A(A(A(x))) = x+3*x^2+9*x^3.

Original entry on oeis.org

1, 1, 1, -8, 28, -26, -386, 2701, -5399, -42155, 358615, -354212, -10419524, 52825312, 236952352, -3103798967, -3013742105, 176201013745, -164790760103, -11763898514324, 27830312919316, 992172068848126, -3681957974446718, -103284064687144985, 528045230825074855
Offset: 1

Author

Dmitry Kruchinin, Dec 09 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = 1/3*(3^(n - m)* Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[k, m]*Sum[t[n, i]*t[i, k], {i, k, n}], {k, m + 1, n - 1}] - Sum[t[n, i]*t[i, m], {i, m + 1, n - 1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 25}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n, m):=if n=m then 1 else 1/3*(3^(n-m)*sum(binomial(j,n-3*m+2*j)*binomial(m,j),j,0,m)-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
    makelist(T(n,1),n,1,7);

Formula

a(n)=T(n,1), T(n, m)=1/3*(3^(n-m)*sum(j=0..m, binomial(j,n-3*m+2*j)*binomial(m,j))-sum(k=m+1..n-1, T(k, m)*sum(, i=k..n, T(n, i)*T(i, k)))-sum(i=m+1..n-1, T(n, i)*T(i, m))), T(n,n)=1.

A220112 E.g.f. A(x) satisfies A(A(x)) = (1/4)*log(1/(1-4*x)).

Original entry on oeis.org

1, 2, 10, 80, 872, 11928, 195072, 3702080, 80065792, 1950808000, 53016791360, 1587229842688, 51619520360960, 1808576831681536, 68562454975587328, 2830905156661645312, 124395772159835529216, 5504660984739184156672, 250011277837808237105152, 14799530615476409472303104
Offset: 1

Author

Dmitry Kruchinin, Dec 05 2012

Keywords

Comments

a(23) = -4050933314339181211663673622528 is the first negative term. - Vladimir Reshetnikov, Aug 15 2021

References

  • Comtet, L; Advanced Combinatorics (1974 edition), D. Reidel Publishing Company, Dordrecht - Holland, pp. 147-148.

Crossrefs

Programs

  • Maple
    A := proc(n, m) option remember; if n = m then 1 else
    1/2*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - add(A(n,k)*A(k,m), k =m+1..n-1)) fi end: a := n -> A(n,1): seq(a(n), n = 1..23); # Peter Luschny, Aug 15 2021
  • Mathematica
    t[n_, m_] := t[n, m] = 1/2*(4^(n - m)*(-1)^(n - m)*StirlingS1[n, m] - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 20}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(4^(n-m)*(-1)^(n-m)*stirling1(n,m)-sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist((T(n,1)),n,1,10);

Formula

a(n) = T(n,1), T(n,m) = (1/2)*(4^(n-m)*(-1)^(n-m)*Stirling1(n,m) - Sum_{i=m+1..n-1} T(n,i)*T(i,m)), T(n,n)=1.

Extensions

More terms from Vladimir Reshetnikov, Aug 15 2021

A220113 E.g.f. A(x)=sum{n>0, a(n)x^(2*n-1)/(2*n-1)!} satisfies A(A(x))=sin(2*x)/2.

Original entry on oeis.org

1, -2, -12, -424, -29808, -2966816, -237449920, 76118167936, 84317834342656, 53499781544238592, 20080969948883956736, -10740526073453596649472, -31099457241702481710116864
Offset: 1

Author

Dmitry Kruchinin, Dec 05 2012

Keywords

Crossrefs

Cf. A048602.

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = 1/2*(2^(n - 2*m)*(((-1)^(n-m) + 1)* Sum[(2*i - m)^n*Binomial[m, i]*(-1)^((n+m)/2 - i), {i, 0, m/2}])/m! - Sum[t[n, i]*t[i, m], {i, m+1, n-1}]); t[n_, n_] = 1; Table[ t[2*n-1, 1], {n, 1, 13}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum((2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i),i,0,m/2))/m!-sum(T(n,i)*T(i,m),i,m+1,n-1));
    makelist(((T3(2*n-1,1))),n,1,7);

Formula

a(n)=T(2*n-1,1), T(n,m)=1/2*(2^(n-2*m)*(((-1)^(n-m)+1)*sum(i=0..m/2, (2*i-m)^n*binomial(m,i)*(-1)^((n+m)/2-i)))/m!-sum(i=m+1..n-1, T(n,i)*T(i,m))), n>m, T(n,n)=1.

A220110 Expansion of A(x) satisfying A(A(x)) = x+2x^2+4x^3.

Original entry on oeis.org

1, 1, 1, -3, 5, 1, -39, 117, 13, -1311, 3441, 9525, -78603, 16961, 1520521, -3649323, -28760163, 144787265, 601582689, -5374096875, -15170850555, 225456060897, 461284881657, -11141961064971, -15963771799251, 647040052660257, 569313149887057
Offset: 1

Author

Dmitry Kruchinin, Dec 05 2012

Keywords

Examples

			First column of
1;
1,1;
1,2,1;
-3,3,3,1;
5,-4,6,4,1;
1,5,-2,10,5,1;
-39,6,3,4,15,6,1;
117,-57,9,3,15,21,7,1;
13,128,-56,8,10,32,28,8,1;
-1311,201,84,-44,6,30,56,36,9,1;
		

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = 1/2*(2^(n-m)*Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[n, k]*t[k, m], {k, m+1, n-1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 27}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n,m):=if n=m then 1 else 1/2*(2^(n-m)*sum(binomial(j,n-3*m+2*j)*binomial(m,j),j,0,m)-sum(T(n,k)*T(k,m),k,m+1,n-1));
    makelist((T(n,1)),n,1,10);

Formula

a(n)=T(n,1), 2*T(n,m)= 2^(n-m) *sum_{j=0..m} binomial(j,n-3*m+2*j) *binomial(m,j) -sum_{k=m+1..n-1} T(n,k)*T(k,m), n>m, T(n,n)=1.

A200144 The number of multinomial coefficients, based on a set of partitions of n into m positions, divisible by m entirely.

Original entry on oeis.org

1, 1, 2, 3, 6, 7, 14, 17, 27, 34, 55, 64, 100, 121, 167, 213, 296, 354, 489, 594, 776, 964, 1254, 1511, 1951, 2378, 2986, 3643, 4564, 5483, 6841, 8245, 10099, 12190, 14862, 17783, 21636, 25849, 31184
Offset: 1

Author

Dmitry Kruchinin, Nov 11 2011

Keywords

Comments

If n is prime, then the number of multinomial coefficients, based on a set of partitions of n at position m, divided by m entirely, less 1 than the number of partitions of numbers for all m.

Examples

			n=7;
  Set of partitions of n into m=4 parts
[1,1,1,4]
[1,1,2,3]
[1,2,2,2]
number of different parts
[3,1]
[2,1,1]
[1,3]
Multinomial coefficient,  divisible by m
4!/(4*(1!*3!))=1
4!/(4*(2!*1!*1!))=2
4!/(4*(1!*3!))=1
Set of partitions of n into m=7 parts
[1,1,1,1,1,1,1]
number of different parts
[7]
Multinomial coefficient,  divisible by m
7!/(7*(7!))=1/7
		

Programs

  • Maxima
    /* count number of partitions of n into m parts */
    b(n, m):=if n
    				

A190667 Expansion of (1+2*x)/(1-x^4-2*x^3-2*x^2-x).

Original entry on oeis.org

1, 3, 5, 13, 30, 69, 160, 371, 859, 1990, 4610, 10679, 24738, 57306, 132750, 307517, 712367, 1650207, 3822725, 8855390, 20513621, 47520058, 110080805, 255003553, 590718900, 1368407674, 3169933385, 7343190086, 17010591104, 39405245720
Offset: 0

Author

Dmitry Kruchinin, May 16 2011

Keywords

Programs

  • Magma
    [ (n+1)*&+[ (Binomial(k, n-k+1)*Fibonacci(k))/k: k in [1..n+1] ]: n in [0..35] ]; // Klaus Brockhaus, May 17 2011
    
  • Magma
    [ n eq 1 select 1 else n eq 2 select 3 else n eq 3 select 5 else n eq 4 select 13 else Self(n-1)+2*Self(n-2)+2*Self(n-3)+Self(n-4): n in [1..36] ]; // Klaus Brockhaus, Jun 01 2011
  • Mathematica
    CoefficientList[Series[(1+2x)/(1-x^4-2x^3-2x^2-x),{x,0,40}],x] (* or *) LinearRecurrence[ {1,2,2,1},{1,3,5,13},40] (* Harvey P. Dale, Feb 25 2023 *)
  • Maxima
    a(n):=(n+1)*sum(binomial(k,n-k+1)*fib(k)/k,k,1,n+1);makelist(a(n),n,0,35);
    
  • Maxima
    a(n):=if n<0 then 0 else if n=0 then 1 else if n=1 then 3 else if n=2 then 5 else if n=3 then 13 else a(n-1)+2*a(n-2)+2*a(n-3)+a(n-4);
    

Formula

a(n) = (n+1)*sum(k=1..n+1, binomial(k, n-k+1)*A000045(k)/k).
a(n) = a(n-1)+2*a(n-2)+2*a(n-3)+a(n-4), a(0)=1, a(1)=3, a(2)=5, a(3)=13.

A190733 Expansion of (4*x+2)/(1+sqrt(1-4*x-4*x^2)).

Original entry on oeis.org

1, 3, 5, 15, 49, 175, 657, 2559, 10241, 41855, 173953, 732927, 3123457, 13439743, 58307841, 254779391, 1120247809, 4952864767, 22005184513, 98196398079, 439923990529, 1977917169663, 8921667641345, 40361657696255, 183092192411649, 832634240106495, 3795237359190017
Offset: 0

Author

Dmitry Kruchinin, May 26 2011

Keywords

Programs

  • Mathematica
    CoefficientList[Series[(4x+2)/(1+Sqrt[1-4x-4x^2]),{x,0,40}],x] (* Harvey P. Dale, Mar 20 2015 *)
  • Maxima
    a(n):=(n+1)*sum(binomial(k,n-k+1)/k*binomial(2*k-2,k-1)/k,k,1,(n+1))
    
  • PARI
    x='x+O('x^66); /* that many terms */
    Vec((4*x+2)/(1+sqrt(1-4*x-4*x^2))) /* show terms */ /* Joerg Arndt, May 27 2011 */

Formula

a(n) = (n+1)*sum(k=1..n+1,binomial(k,n-k+1)*Catalan(k-1)/k).
D-finite with recurrence: (n+1)*a(n) +(-n+1)*a(n-1) +14*(-n+2)*a(n-2) +20*(-n+3)*a(n-3) +8*(-n+4)*a(n-4)=0. - R. J. Mathar, Jan 25 2020