cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A220288 G.f. A(x) satisfies A(A(A(x))) = x+3*x^2+9*x^3.

Original entry on oeis.org

1, 1, 1, -8, 28, -26, -386, 2701, -5399, -42155, 358615, -354212, -10419524, 52825312, 236952352, -3103798967, -3013742105, 176201013745, -164790760103, -11763898514324, 27830312919316, 992172068848126, -3681957974446718, -103284064687144985, 528045230825074855
Offset: 1

Views

Author

Dmitry Kruchinin, Dec 09 2012

Keywords

Crossrefs

Programs

  • Mathematica
    t[n_, m_] := t[n, m] = 1/3*(3^(n - m)* Sum[Binomial[j, n - 3*m + 2*j]*Binomial[m, j], {j, 0, m}] - Sum[t[k, m]*Sum[t[n, i]*t[i, k], {i, k, n}], {k, m + 1, n - 1}] - Sum[t[n, i]*t[i, m], {i, m + 1, n - 1}]); t[n_, n_] = 1; Table[t[n, 1], {n, 1, 25}] (* Jean-François Alcover, Feb 22 2013 *)
  • Maxima
    T(n, m):=if n=m then 1 else 1/3*(3^(n-m)*sum(binomial(j,n-3*m+2*j)*binomial(m,j),j,0,m)-sum(T(k, m)*sum(T(n, i)*T(i, k), i, k, n), k, m+1, n-1)-sum(T(n, i)*T(i, m), i, m+1, n-1));
    makelist(T(n,1),n,1,7);

Formula

a(n)=T(n,1), T(n, m)=1/3*(3^(n-m)*sum(j=0..m, binomial(j,n-3*m+2*j)*binomial(m,j))-sum(k=m+1..n-1, T(k, m)*sum(, i=k..n, T(n, i)*T(i, k)))-sum(i=m+1..n-1, T(n, i)*T(i, m))), T(n,n)=1.

A371841 G.f. A(x) satisfies A(A(A(A(A(A(x)))))) = x + 6*x^2 + 36*x^3.

Original entry on oeis.org

0, 1, 1, 1, -35, 325, -1295, -12455, 283285, -2186675, -5612255, 324564625, -2869315163, -12271744331, 490525545169, -2159646628535, -58485623789483, 634417586418781, 8780962428445537, -156001827155519807, -2145519156372933275, 50455156500263955781
Offset: 0

Views

Author

Seiichi Manyama, May 04 2024

Keywords

Examples

			A(A(x)) = x + 2*x^2 + 4*x^3 - 64*x^4 + 448*x^5 - 832*x^6 - 24704*x^7 + ...
A(A(A(x))) = x + 3*x^2 + 9*x^3 - 81*x^4 + 405*x^5 + 243*x^6 - 28431*x^7 + ...
		

Crossrefs

Formula

Define the sequence b(n,m) as follows. If n
Let B(x) = A(A(x)) and C(x) = A(A(A(x))).
B(B(B(x))) = C(C(x)) = x + 6*x^2 + 36*x^3.
B(x) = F(2*x)/2, where F(x) is the g.f. for A220288.
C(x) = G(3*x)/3, where G(x) is the g.f. for A220110.

A372537 G.f. A(x) satisfies A(A(A(A(x)))) = x + 4*x^2 + 16*x^3.

Original entry on oeis.org

0, 1, 1, 1, -15, 81, -159, -1695, 19857, -77775, -372351, 6628545, -24096975, -232640751, 2756221601, 2199811873, -210934282287, 553408050417, 17722961332929, -95716389015423, -1950283855292559, 15527782649242065, 285278599792984545, -3006768595808218911
Offset: 0

Author

Seiichi Manyama, May 05 2024

Keywords

Examples

			A(A(x)) = x + 2*x^2 + 4*x^3 - 24*x^4 + 80*x^5 + 32*x^6 - 2496*x^7 + 14976*x^8 + ...
		

Crossrefs

Formula

Define the sequence b(n,m) as follows. If n
Let B(x) = A(A(x)).
B(B(x)) = x + 4*x^2 + 16*x^3.
B(x) = F(2*x)/2, where F(x) is the g.f. for A220110.

A372521 G.f. A(x) satisfies A(A(A(A(A(x))))) = x + 5*x^2 + 25*x^3.

Original entry on oeis.org

0, 1, 1, 1, -24, 176, -524, -5124, 87126, -506774, -1759824, 57671226, -358791624, -2206347624, 49453238976, -92944954824, -4824317301399, 31062072140001, 557647434392001, -6058153265478399, -93734220877891074, 1402372000511972226, 21436083233577492876
Offset: 0

Author

Seiichi Manyama, May 04 2024

Keywords

Crossrefs

Formula

Define the sequence b(n,m) as follows. If n
Showing 1-4 of 4 results.