cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Juan B. Gil

Juan B. Gil's wiki page.

Juan B. Gil has authored 14 sequences. Here are the ten most recent ones:

A368178 Number of ordered trees with n+1 leaves, no node of outdegree 1, and having as many leaves marked as the number of nodes of outdegree greater than 1.

Original entry on oeis.org

1, 2, 9, 54, 375, 2848, 22981, 193742, 1688427, 15101778, 137930199, 1281629088, 12081441411, 115288530516, 1111783691037, 10819906562622, 106147110898419, 1048748721598078, 10427413491373843, 104265186535823798, 1047894080773661481
Offset: 0

Author

Juan B. Gil, Jan 03 2024

Keywords

Comments

If T(n, k) denotes the number of ordered trees with n + 1 leaves, no node of outdegree 1, and k nodes of outdegree greater than 1, where k of the leaves are marked, then a(n) = Sum_{k=1..n} T(n, k).

Examples

			For n = 2 there are 9 such marked trees: There is one tree [ [][][] ] with only one node of outdegree > 1 (the root). This tree leads to 3 marked trees. The tree [ [] [[][]] ] has 2 nodes of outdegree > 1, so it gives binomial(3,2) = 3 marked trees. Similarly, the tree [ [[][]] [] ] gives 3 more marked trees for a total of 9.
		

Crossrefs

Programs

  • Mathematica
    Join[{1}, Table[Sum[Binomial[n + k, k]*Binomial[n, k - 1]*Binomial[n, k]/n, {k, 1, n}], {n, 1, 25}]] (* Vaclav Kotesovec, Jan 04 2024 *)
  • PARI
    a(n) = if(n==0, 1, sum(k=1, n, binomial(n+k, k)*binomial(n, k-1)* binomial(n, k)/n)) \\ Andrew Howroyd, Jan 03 2024
    
  • SageMath
    def a(n): return (n + 1) * hypergeometric([1 - n, -n, n + 2], [2, 2], 1)
    print([simplify(a(n)) for n in range(12)])  # Peter Luschny, Jan 03 2024

Formula

a(n) = Sum_{k=1..n} binomial(n+k, k) * binomial(n, k-1) * binomial(n, k)/n for n > 0.
a(n) = (n + 1) * hypergeom([1 - n, -n, n + 2], [2, 2], 1). - Peter Luschny, Jan 03 2024
a(n) ~ phi^(5*n + 7/2) / (2*Pi*5^(1/4)*n^2), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jan 04 2024

A366774 Number of 2-distant 3-noncrossing partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 876, 4115, 20765, 111301, 627821, 3698873, 22623354, 142940629, 929208778, 6194162081, 42223649277, 293640007995, 2079196943605, 14964254850197, 109308213994757, 809340696014733, 6067405789245061, 46008536947670701, 352579939415882813
Offset: 0

Author

Juan B. Gil, Nov 13 2023

Keywords

Comments

a(n+1) is the binomial transform of A108304.

Examples

			There are 877 partitions of 7 elements, but a(7)=876 because the partition (1,5)(2,6)(3,7)(4) has a 2-distant 3-crossing.
		

References

  • Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.

Crossrefs

Programs

  • Mathematica
    b[n_] := b[n] = If[n < 2, 1, (2*(5*n^2 + 12*n - 2)*b[n - 1] + 9*(-n^2 + n + 2)*b[n - 2])/((n + 4)*(n + 5))];
    a[n_] := If[n == 0, 1, Sum[Binomial[n - 1, i]*b[i], {i, 0, n - 1}]];
    Table[a[n], {n, 0, 200}] (* Jean-François Alcover, Nov 25 2023 *)

Formula

a(n+1) = Sum_{i=0..n} binomial(n,i)*A108304(i).
a(n) ~ 2^(n+1) * 5^(n+7) / (3^(9/2) * Pi * n^7). - Vaclav Kotesovec, Jan 04 2024

Extensions

More terms from Jean-François Alcover, Nov 25 2023

A366776 Number of 2-distant 5-noncrossing partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21147, 115975, 678569, 4213546, 27642948, 190866373, 1382340849, 10469739750, 82701857286, 679644668584, 5797647603036, 51228938289039, 467980667203765
Offset: 0

Author

Juan B. Gil, Nov 13 2023

Keywords

Comments

a(n+1) is the binomial transform of A192126.

Examples

			There are 678570 partitions of 11 elements, but a(11)=678569 because the partition (1,7)(2,8)(3,9)(4,10)(5,11)(6) has a 2-distant 5-crossing.
		

References

  • Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.

Crossrefs

Formula

a(n+1) = Sum_{i=0..n} binomial(n,i)*A192126(i).

A366775 Number of 2-distant 4-noncrossing partitions of {1,...,n}.

Original entry on oeis.org

1, 1, 2, 5, 15, 52, 203, 877, 4140, 21146, 115938, 677765, 4200011, 27446229, 188255890, 1349652560, 10075332564, 78052115894, 625568350179, 5173033558415, 44028767332852, 384857341649657
Offset: 0

Author

Juan B. Gil, Nov 13 2023

Keywords

Comments

a(n+1) is the binomial transform of A108305.

Examples

			There are 21147 partitions of 9 elements, but a(9)=21146 because the partition (1,6)(2,7)(3,8)(4,9)(5) has a 2-distant 4-crossing.
		

References

  • Juan B. Gil and Jordan O. Tirrell, A simple bijection for enhanced, classical, and 2-distant k-noncrossing partitions, Discrete Math. 343 (2020), no. 6, 111705, 5 pp.

Crossrefs

Formula

a(n+1) = Sum_{i=0..n} binomial(n,i)*A108305(i).

A363431 Number of 123-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 2, 5, 14, 44, 150, 496, 1758, 6018, 21782, 76414, 280448, 1001752, 3714032, 13450270, 50259604, 183995056, 691863078, 2555043320, 9657267848, 35921300392, 136360740016, 510267869416, 1944193285228, 7312488701868, 27950641500876, 105590010259396, 404724123141348, 1534775681029994
Offset: 0

Author

Juan B. Gil, Jun 22 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].

Examples

			For n=4 the a(4)=5 permutations are 2413, 3142, 3412, 3421, 4312.
		

Crossrefs

Cf. A075834.

Formula

For n>2, a(n) = f_0(n) - f_1(n-1) + f_2(n) - Sum_{k=1..floor((n-3)/2)} C(k)^2*a(n-2*k), where C(k)=binomial(2*k,k)/(k+1) and f_j(m) denotes the number of 123-avoiding permutations of size m having j fixed points.

A363432 Number of 231-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 1, 2, 6, 18, 54, 170, 551, 1817, 6092, 20722, 71325, 248055, 870402, 3077861, 10959008, 39261382, 141430953, 512002865, 1861872379, 6798330676, 24915934639, 91630864177, 338048560865, 1250793108398, 4640542045919, 17260221009367, 64349394615738, 240434325753052
Offset: 0

Author

Juan B. Gil, Jun 22 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].
a(n) is also the number of 312-avoiding SIF permutations of size n.

Examples

			For n=5 the a(5)=6 permutations are 51234, 51423, 53124, 54123, 54132, 54213.
		

Crossrefs

Programs

  • Mathematica
    nmax = 30; CoefficientList[Series[1 + x/(1 + CatalanNumber[1]*x^2*(x + 1) + ContinuedFractionK[-x, 1 + CatalanNumber[k]*x^(k + 1)*(x + 1), {k, 2, nmax}]), {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 23 2023 *)

Formula

G.f.: 1 + x/(1+C(1)*x^2*(x+1)-x/(1+C(2)*x^3*(x+1)-x/(1+C(3)*x^4*(x+1)-x/(...)))), where C(k)=binomial(2*k,k)/(k+1).

A363433 Number of (123,231)-avoiding stabilized-interval-free permutations of size n.

Original entry on oeis.org

1, 1, 1, 1, 1, 2, 3, 3, 5, 5, 7, 7, 10, 9, 13, 12, 16, 15, 20, 18, 24, 22, 28, 26, 33, 30, 38, 35, 43, 40, 49, 45, 55, 51, 61, 57, 68, 63, 75, 70, 82, 77, 90, 84, 98, 92, 106, 100, 115, 108, 124, 117, 133, 126, 143, 135, 153, 145, 163, 155, 174, 165, 185, 176, 196
Offset: 0

Author

Juan B. Gil, Jun 30 2023

Keywords

Comments

A stabilized-interval-free (SIF) permutation on [n] = {1, 2, ..., n} is one that does not stabilize any proper subinterval of [n].

Examples

			For n from 1 to 5 the six permutations (1+1+1+1+2) are 1, 21, 312, 4312, 54132, 54213.
		

Crossrefs

Programs

  • Maple
    A131713 := proc(n)
        op(1+modp(n,3),[1,-2,1]) ;
    end proc:
    A363433 := proc(n)
        if n < 3 then
            1;
        else
            16*A131713(n) +42*n-79+6*n^2-81*(-1)^n+18*n*(-1)^n;
            %/144 ;
        end if;
    end proc:
    seq(A363433(n),n=0..20) ; # R. J. Mathar, Jul 17 2023
  • Mathematica
    LinearRecurrence[{0,2,1,-1,-2,0,1},{1,1,1,1,1,2,3,3,5,5},100] (* Paolo Xausa, Nov 18 2023 *)
  • PARI
    Vec((x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3) + O(x^65)) \\ Michel Marcus, Jul 01 2023

Formula

G.f.: (x^9 + x^8 - 3*x^6 - 2*x^5 + x^4 + 2*x^3 + x^2 - x - 1)/((x^2 + x + 1)*(x + 1)^2*(x - 1)^3).
E.g.f.: (144 + 36*x*(2 + x) + (3*x^2 + 15*x - 80)*cosh(x) + 8*exp(-x/2)*(cos(sqrt(3)*x/2) - sqrt(3)*sin(sqrt(3)*x/2)) + (3*x^2 + 33*x + 1)*sinh(x))/72. - Stefano Spezia, Jul 01 2023
144*a(n) = 16*A131713(n) +42*n -79 +6*n^2 -81*(-1)^n +18*n*(-1)^n , for n>=3. - R. J. Mathar, Jul 17 2023

A361275 Number of 1423-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 5, 11, 17, 29, 41, 61, 81, 111, 141, 183, 225, 281, 337, 409, 481, 571, 661, 771, 881, 1013, 1145, 1301, 1457, 1639, 1821, 2031, 2241, 2481, 2721, 2993, 3265, 3571, 3877, 4219, 4561, 4941, 5321, 5741, 6161, 6623, 7085, 7591, 8097, 8649, 9201, 9801, 10401
Offset: 0

Author

Juan B. Gil, Mar 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.
Avoiding any of the patterns 2314 or 3412 gives the same sequence.

Examples

			For n=4 the a(4) = 5 permutations are 1234, 1342, 2314, 3124, 3412.
		

Crossrefs

For the corresponding odd permutations, cf. A005993.

Programs

  • Maple
    seq(1 - 5*n/24 + n^3/12 - (-1)^n * n/8, n = 0 .. 100); # Robert Israel, Mar 10 2023

Formula

G.f.: -(x^5-x^4-4*x^3+2*x^2+x-1)/((x+1)^2*(x-1)^4).
a(n) = 1 - 5*n/24 + n^3/12 - (-1)^n * n/8. - Robert Israel, Mar 10 2023

A361276 Number of 2413-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 6, 13, 22, 37, 55, 81, 111, 151, 196, 253, 316, 393, 477, 577, 685, 811, 946, 1101, 1266, 1453, 1651, 1873, 2107, 2367, 2640, 2941, 3256, 3601, 3961, 4353, 4761, 5203, 5662, 6157, 6670, 7221, 7791, 8401, 9031, 9703, 10396, 11133, 11892, 12697, 13525, 14401
Offset: 0

Author

Juan B. Gil, Mar 10 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.

Examples

			For n=4 the a(4) = 6 permutations are 1234, 1342, 1423, 2314, 3124, 3412.
		

Crossrefs

For the corresponding odd permutations, cf. A006918.

Programs

  • Mathematica
    LinearRecurrence[{2,1,-4,1,2,-1},{1,1,1,3,6,13},50] (* Harvey P. Dale, Aug 14 2023 *)

Formula

G.f.: -(x^5-2*x^4-4*x^3+2*x^2+x-1)/((x+1)^2*(x-1)^4).

A361274 Number of 1342-avoiding even Grassmannian permutations of size n.

Original entry on oeis.org

1, 1, 1, 3, 5, 12, 17, 32, 41, 67, 81, 121, 141, 198, 225, 302, 337, 437, 481, 607, 661, 816, 881, 1068, 1145, 1367, 1457, 1717, 1821, 2122, 2241, 2586, 2721, 3113, 3265, 3707, 3877, 4372, 4561, 5112, 5321, 5931, 6161, 6833, 7085, 7822, 8097, 8902, 9201, 10077, 10401
Offset: 0

Author

Juan B. Gil, Mar 09 2023

Keywords

Comments

A permutation is said to be Grassmannian if it has at most one descent. A permutation is even if it has an even number of inversions.
a(n) is also the number of 3124-avoiding even Grassmannian permutations of size n.

Examples

			For n=4 the a(4) = 5 permutations are 1234, 1423, 2314, 3124, 3412.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1,3,-3,-3,3,1,-1},{1,1,1,3,5,12,17},51] (* Stefano Spezia, Mar 09 2023 *)

Formula

G.f.: -(2*x^6-x^5-5*x^4-2*x^3+3*x^2-1)/((x+1)^3*(x-1)^4).
E.g.f.: ((24 - 9*x + 6*x^2 + 2*x^3)*cosh(x) + (33 - 6*x + 9*x^2 + 2*x^3)*sinh(x))/24. - Stefano Spezia, Mar 09 2023