A287847
Number A(n,k) of Dyck paths of semilength n such that no level has more than k peaks; square array A(n,k), n >= 0, k >= 0, read by descending antidiagonals.
Original entry on oeis.org
1, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 1, 2, 3, 0, 1, 1, 2, 4, 5, 0, 1, 1, 2, 5, 12, 13, 0, 1, 1, 2, 5, 13, 31, 31, 0, 1, 1, 2, 5, 14, 40, 90, 71, 0, 1, 1, 2, 5, 14, 41, 119, 264, 181, 0, 1, 1, 2, 5, 14, 42, 130, 376, 797, 447, 0, 1, 1, 2, 5, 14, 42, 131, 414, 1202, 2402, 1111, 0
Offset: 0
. A(3,1) = 3: /\
. /\ /\ / \
. /\/ \ / \/\ / \ .
.
. A(3,2) = 4: /\
. /\ /\ /\/\ / \
. /\/ \ / \/\ / \ / \ .
.
. A(3,3) = 5: /\
. /\ /\ /\/\ / \
. /\/\/\ /\/ \ / \/\ / \ / \ .
.
Square array A(n,k) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 1, 1, 1, 1, 1, 1, ...
0, 1, 2, 2, 2, 2, 2, 2, ...
0, 3, 4, 5, 5, 5, 5, 5, ...
0, 5, 12, 13, 14, 14, 14, 14, ...
0, 13, 31, 40, 41, 42, 42, 42, ...
0, 31, 90, 119, 130, 131, 132, 132, ...
0, 71, 264, 376, 414, 427, 428, 429, ...
Columns k=0-10 give:
A000007,
A281874,
A287966,
A287967,
A287968,
A287969,
A287970,
A287971,
A287972,
A287973,
A287974.
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
A:= proc(n, k) option remember; `if`(n=0, 1, (m->
add(b(n, m, j), j=1..m))(min(n, k)))
end:
seq(seq(A(n, d-n), n=0..d), d=0..14);
-
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m]*Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
A[n_, k_] := A[n, k] = If[n==0, 1, Sum[b[n, #, j], {j, 1, #}]&[Min[n, k]]];
Table[A[n, d - n], {d, 0, 14}, {n, 0, d}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
@cacheit
def A(n, k):
if n==0: return 1
m=min(n, k)
return sum([b(n, m , j) for j in range(1, m + 1)])
for d in range(21): print([A(n, d - n) for n in range(d + 1)]) # Indranil Ghosh, Aug 16 2017
A288387
Number T(n,k) of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals k; triangle T(n,k), n>=0, 0<=k<=n, read by rows.
Original entry on oeis.org
1, 0, 1, 1, 0, 1, 2, 2, 0, 1, 8, 5, 0, 0, 1, 25, 13, 3, 0, 0, 1, 83, 35, 13, 0, 0, 0, 1, 282, 112, 30, 4, 0, 0, 0, 1, 971, 368, 61, 29, 0, 0, 0, 0, 1, 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1, 11940, 3992, 619, 188, 56, 0, 0, 0, 0, 0, 1, 42504, 13449, 2241, 345, 240, 6, 0, 0, 0, 0, 0, 1
Offset: 0
. T(4,1) = 5:
. /\ /\ /\/\ /\ /\/\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/\ .
.
Triangle T(n,k) begins:
: 1;
: 0, 1;
: 1, 0, 1;
: 2, 2, 0, 1;
: 8, 5, 0, 0, 1;
: 25, 13, 3, 0, 0, 1;
: 83, 35, 13, 0, 0, 0, 1;
: 282, 112, 30, 4, 0, 0, 0, 1;
: 971, 368, 61, 29, 0, 0, 0, 0, 1;
: 3386, 1208, 172, 90, 5, 0, 0, 0, 0, 1;
Columns k=0-10 give:
A288539,
A288540,
A288541,
A288542,
A288543,
A288544,
A288545,
A288546,
A288547,
A288548,
A288549.
-
b:= proc(n, k, j) option remember; `if`(j=n, 1,
add(add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j))
end:
A:= proc(n, k) option remember; `if`(n=0, 1,
add(b(n, k, j), j=k..n))
end:
T:= (n, k)-> `if`(n=k, 1, A(n, k)-A(n, k+1)):
seq(seq(T(n, k), k=0..n), n=0..14);
-
b[n_, k_, j_] := b[n, k, j] = If[j==n, 1, Sum[Sum[Binomial[i, m]*Binomial[ j-1, i-1-m], {m, Max[k, i - j], i - 1}]*b[n - j, k, i], {i, 1, n - j}]];
A[n_, k_] := A[n, k] = If[n == 0, 1, Sum[b[n, k, j], {j, k, n}]];
T[n_, k_] := If[n == k, 1, A[n, k] - A[n, k + 1]];
Table[T[n, k], {n, 0, 14}, {k, 0, n}] // Flatten (* Jean-François Alcover, May 25 2018, translated from Maple *)
A287860
Number of Dyck paths of semilength 2n such that the maximal number of peaks per level equals n.
Original entry on oeis.org
1, 1, 7, 29, 163, 925, 5580, 34751, 222627, 1456952, 9699872, 65474460, 446971110, 3080074508, 21393773841, 149614083615, 1052537452164, 7443584137525, 52888757972865, 377382278671610, 2703141489113003, 19430405608302831, 140118758417377105
Offset: 0
. /\ /\ /\/\
. a(2) = 7: /\/\/ \ /\/ \/\ /\/ \
.
. /\/\
. /\ /\ /\ /\/\ / \
. / \/\/\ / \/ \ / \/\ / \ .
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> `if`(n=0, 1, g(2*n, n)-g(2*n, n-1)):
seq(a(n), n=0..23);
-
b[n_, k_, j_] := b[n, k, j] = If[j == n, 1, Sum[b[n - j, k, i]*Sum[ Binomial[i, m] * Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, 1, Min[j + k, n - j]}]];
g[n_, k_] := g[n, k] = Sum[b[n, k, j], {j, 1, k}];
a[n_] := If[n == 0, 1, g[2*n, n] - g[2*n, n - 1]];
Table[a[n], {n, 0, 23}] (* Jean-François Alcover, Jun 02 2018, from Maple *)
A288743
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals two.
Original entry on oeis.org
1, 1, 7, 18, 59, 193, 616, 1955, 6244, 19926, 63490, 202068, 642816, 2044571, 6502193, 20673020, 65714586, 208870774, 663868055, 2109997964, 6706282384, 21315049217, 67748772174, 215343287489, 684507346839, 2175916952697, 6917096914771, 21989855308501
Offset: 2
. a(4) = 7: /\ /\ /\/\ /\ /\ /\
. /\/\/ \ /\/ \/\ /\/ \ / \/\/\ / \/ \ .
.
. /\/\
. /\/\ / \
. / \/\ / \ .
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 2)-g(n, 1):
seq(a(n), n=2..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j, k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 2] - g[n, 1], {n, 2, 35}] (* Indranil Ghosh, Aug 09 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum(b(n - j, k, i)*sum(binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)) for i in range(1, min(j + k, n - j) + 1))
def g(n, k): return sum(b(n, k, j) for j in range(1, k + 1))
def a(n): return g(n, 2) - g(n, 1)
print([a(n) for n in range(2, 36)]) # Indranil Ghosh, Aug 09 2017
A288744
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals three.
Original entry on oeis.org
1, 1, 9, 29, 112, 405, 1514, 5565, 20249, 73416, 265616, 957677, 3441282, 12329838, 44062706, 157105923, 559009643, 1985301783, 7038496811, 24913917722, 88058727525, 310832221932, 1095854282575, 3859201682187, 13576884290502, 47719628447310, 167579774234059
Offset: 3
. T(4) = 1: /\/\/\
. / \ .
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 3)-g(n, 2):
seq(a(n), n=3..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j, k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 3] - g[n, 2], {n, 3, 35}] (* Indranil Ghosh, Aug 09 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum(b(n - j, k, i)*sum(binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)) for i in range(1, min(j + k, n - j) + 1))
def g(n, k): return sum(b(n, k, j) for j in range(1, k + 1))
def a(n): return g(n, 3) - g(n, 2)
print([a(n) for n in range(3, 36)]) # Indranil Ghosh, Aug 09 2017
A288745
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals four.
Original entry on oeis.org
1, 1, 11, 38, 163, 648, 2571, 10173, 40025, 156087, 605057, 2335566, 8980883, 34412583, 131431024, 500437733, 1900135511, 7196366668, 27191450135, 102522926104, 385785153584, 1448985664032, 5432879981201, 20337296148823, 76015000686028, 283720418696600
Offset: 4
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 4)-g(n, 3):
seq(a(n), n=4..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 4] - g[n, 3], {n, 4, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
def g(n, k): return sum([b(n, k, j) for j in range(1, k + 1)])
def a(n): return g(n, 4) - g(n, 3)
print([a(n) for n in range(4, 36)]) # Indranil Ghosh, Aug 08 2017
A288746
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals five.
Original entry on oeis.org
1, 1, 13, 48, 220, 925, 3895, 16137, 66399, 271446, 1101626, 4442143, 17822176, 71191082, 283269813, 1123212251, 4439583152, 17496345670, 68765995160, 269595218881, 1054499461385, 4115767918639, 16032123369549, 62333852291879, 241935803355457, 937486479689517
Offset: 5
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 5)-g(n, 4):
seq(a(n), n=5..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 5] - g[n, 4], {n, 5, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
def g(n, k): return sum([b(n, k, j) for j in range(1, k + 1)])
def a(n): return g(n, 5) - g(n, 4)
print([a(n) for n in range(5, 36)]) # Indranil Ghosh, Aug 08 2017
A288747
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals six.
Original entry on oeis.org
1, 1, 15, 59, 288, 1269, 5580, 24092, 102847, 434794, 1824249, 7600076, 31459191, 129505739, 530589496, 2164696038, 8798355232, 35639564649, 143919521948, 579526079335, 2327484839124, 9324921648372, 37275509745894, 148692946409186, 591979810055622
Offset: 6
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 6)-g(n, 5):
seq(a(n), n=6..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 6] - g[n, 5], {n, 6, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
def g(n, k): return sum([b(n, k, j) for j in range(1, k + 1)])
def a(n): return g(n, 6) - g(n, 5)
print([a(n) for n in range(6, 36)]) # Indranil Ghosh, Aug 08 2017
A288748
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals seven.
Original entry on oeis.org
1, 1, 17, 71, 368, 1697, 7769, 34751, 153313, 668088, 2882104, 12329145, 52358300, 220901081, 926638057, 3867432363, 16068748557, 66495876593, 274178902925, 1126793986670, 4616878543095, 18864740697016, 76885237242318, 312611605360287, 1268261191750753
Offset: 7
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 7)-g(n, 6):
seq(a(n), n=7..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 7] - g[n, 6], {n, 7, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum([b(n - j, k, i)*sum([binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)]) for i in range(1, min(j + k, n - j) + 1)])
def g(n, k): return sum([b(n, k, j) for j in range(1, k + 1)])
def a(n): return g(n, 7) - g(n, 6)
print([a(n) for n in range(7, 36)]) # Indranil Ghosh, Aug 08 2017
A288749
Number of Dyck paths of semilength n such that the maximal number of peaks per level equals eight.
Original entry on oeis.org
1, 1, 19, 84, 461, 2222, 10577, 48943, 222627, 997735, 4417674, 19359659, 84099436, 362570722, 1552681071, 6609823112, 27989970166, 117967914457, 495087382572, 2069827499508, 8623283249034, 35811917284318, 148289870077879, 612382134256433, 2522591250558641
Offset: 8
-
b:= proc(n, k, j) option remember; `if`(j=n, 1, add(
b(n-j, k, i)*add(binomial(i, m)*binomial(j-1, i-1-m),
m=max(0, i-j)..min(k, i-1)), i=1..min(j+k, n-j)))
end:
g:= proc(n, k) option remember; add(b(n, k, j), j=1..k) end:
a:= n-> g(n, 8)-g(n, 7):
seq(a(n), n=8..35);
-
b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[b[n - j,k, i] Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[0, i - j], Min[k, i - 1]}], {i, Min[j + k, n - j]}]]; g[n_, k_]:=Sum[b[n, k, j], {j, k}]; Table[g[n, 8] - g[n, 7], {n, 8, 35}] (* Indranil Ghosh, Aug 08 2017 *)
-
from sympy.core.cache import cacheit
from sympy import binomial
@cacheit
def b(n, k, j): return 1 if j==n else sum(b(n - j, k, i)*sum(binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(0, i - j), min(k, i - 1) + 1)) for i in range(1, min(j + k, n - j) + 1))
def g(n, k): return sum(b(n, k, j) for j in range(1, k + 1))
def a(n): return g(n, 8) - g(n, 7)
print([a(n) for n in range(8, 36)]) # Indranil Ghosh, Aug 08 2017
Showing 1-10 of 12 results.
Comments