cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A288386 Number T(n,k) of Dyck paths of semilength n such that no positive level has fewer than k peaks; triangle T(n,k), n >= 0, 0 <= k <= n, read by rows.

Original entry on oeis.org

1, 1, 1, 2, 1, 1, 5, 3, 1, 1, 14, 6, 1, 1, 1, 42, 17, 4, 1, 1, 1, 132, 49, 14, 1, 1, 1, 1, 429, 147, 35, 5, 1, 1, 1, 1, 1430, 459, 91, 30, 1, 1, 1, 1, 1, 4862, 1476, 268, 96, 6, 1, 1, 1, 1, 1, 16796, 4856, 864, 245, 57, 1, 1, 1, 1, 1, 1, 58786, 16282, 2833, 592, 247, 7, 1, 1, 1, 1, 1, 1
Offset: 0

Views

Author

Alois P. Heinz, Jun 08 2017

Keywords

Comments

T(n,k) is defined for all n,k >= 0. The triangle contains only the terms for k <= n. T(0,k) = 1, T(n,k) = 0 for k > n > 0.

Examples

			T(4,1) = 6:
                    /\      /\        /\/\    /\        /\/\
     /\/\/\/\  /\/\/  \  /\/  \/\  /\/    \  /  \/\/\  /    \/\ .
Triangle T(n,k) begins:
     1;
     1,    1;
     2,    1,   1;
     5,    3,   1,  1;
    14,    6,   1,  1, 1;
    42,   17,   4,  1, 1, 1;
   132,   49,  14,  1, 1, 1, 1;
   429,  147,  35,  5, 1, 1, 1, 1;
  1430,  459,  91, 30, 1, 1, 1, 1, 1;
  4862, 1476, 268, 96, 6, 1, 1, 1, 1, 1;
		

Crossrefs

Programs

  • Maple
    b:= proc(n, k, j) option remember; `if`(j=n, 1,
          add(add(binomial(i, m)*binomial(j-1, i-1-m),
          m=max(k, i-j)..i-1)*b(n-j, k, i), i=1..n-j))
        end:
    T:= proc(n, k) option remember; `if`(n=0, 1,
          add(b(n, k, j), j=k..n))
        end:
    seq(seq(T(n, k), k=0..n), n=0..14);
  • Mathematica
    b[n_, k_, j_]:=b[n, k, j]=If[j==n, 1, Sum[Sum[Binomial[i, m] Binomial[j - 1, i - 1 - m], {m, Max[k, i - j], i - 1}] b[n - j, k, i], {i, n - j}]]; T[n_, k_]:=T[n, k]=If[n==0, 1, Sum[b[n, k, j], {j, k, n}]]; Table[T[n, k], {n, 0, 15}, {k, 0, n}] // Flatten (* Indranil Ghosh, Aug 09 2017 *)
  • Python
    from sympy.core.cache import cacheit
    from sympy import binomial
    @cacheit
    def b(n, k, j): return 1 if j==n else sum(sum(binomial(i, m)*binomial(j - 1, i - 1 - m) for m in range(max(k, i - j), i))*b(n - j, k, i) for i in range(1, n - j + 1))
    @cacheit
    def T(n, k): return 1 if n==0 else sum(b(n, k, j) for j in range(k, n + 1))
    for n in range(16): print([T(n, k) for k in range(n + 1)]) # Indranil Ghosh, Aug 09 2017

Formula

T(n,k) = Sum_{i=k..n} A288387(n,i) if k <= n.

A288539 Number of Dyck paths of semilength n such that at least one positive level has no peaks.

Original entry on oeis.org

1, 0, 1, 2, 8, 25, 83, 282, 971, 3386, 11940, 42504, 152546, 551426, 2005930, 7337901, 26976726, 99618976, 369349607, 1374391706, 5131186060, 19214759396, 72152791729, 271629133830, 1024989876797, 3876208984221, 14688301498888, 55763768987236, 212077310097784
Offset: 0

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Comments

a(0) = 1 by convention.

Examples

			: a(3) = 2:
:                 /\
:        /\/\    /  \
:       /    \  /    \  .
		

Crossrefs

Column k=0 of A288387.
Cf. A000108.

A288540 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals one.

Original entry on oeis.org

1, 0, 2, 5, 13, 35, 112, 368, 1208, 3992, 13449, 46187, 160804, 565535, 2005796, 7168058, 25793100, 93388250, 340005973, 1244062960, 4572478054, 16874672868, 62508259095, 232338076267, 866289458048, 3239350667761, 12145345634715, 45649270140732
Offset: 1

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Examples

			: a(3) = 2:
:
:          /\    /\
:       /\/  \  /  \/\  .
		

Crossrefs

Column k=1 of A288387.
Cf. A000108.

A288541 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals two.

Original entry on oeis.org

1, 0, 0, 3, 13, 30, 61, 172, 619, 2241, 7736, 25786, 85315, 286653, 986444, 3465777, 12342188, 44275218, 159463056, 576136367, 2089063623, 7607265038, 27829092314, 102263653872, 377340952123, 1397457667346, 5192248524833, 19348310336881, 72292940817636
Offset: 2

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Examples

			: a(5) = 3:
:
:            /\/\      /\/\      /\/\
:       /\/\/    \  /\/    \/\  /    \/\/\  .
		

Crossrefs

Column k=2 of A288387.
Cf. A000108.

A288542 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals three.

Original entry on oeis.org

1, 0, 0, 0, 4, 29, 90, 188, 345, 825, 3089, 13450, 54526, 198846, 668430, 2155731, 6963768, 23265733, 81163559, 292726843, 1073684818, 3953422052, 14517741411, 53096290021, 193719344526, 706944953011, 2586796240687, 9505841335788, 35102295346482
Offset: 3

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Examples

			: a(7) = 4:
:
:        /\/\/\        /\/\/\        /\/\/\        /\/\/\
: /\/\/\/      \  /\/\/      \/\  /\/      \/\/\  /      \/\/\/\  .
		

Crossrefs

Column k=3 of A288387.
Cf. A000108.

A288543 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals four.

Original entry on oeis.org

1, 0, 0, 0, 0, 5, 56, 240, 620, 1220, 2201, 4501, 14231, 67597, 332768, 1455695, 5611277, 19525749, 63217514, 197236391, 617466587, 2015606482, 7005348816, 25768091554, 97973413377, 375778678054, 1431049415936, 5374397862025, 19899453137028, 72900123590938
Offset: 4

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Crossrefs

Column k=4 of A288387.
Cf. A000108.

A288544 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals five.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 6, 97, 567, 1853, 4255, 8133, 14819, 28322, 70510, 301483, 1690196, 8924759, 40966156, 164918951, 596526111, 1986490517, 6238004182, 18971482466, 57762995830, 183044671166, 623496079979, 2298493781597, 8971902046147, 35885921461300
Offset: 5

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Crossrefs

Column k=5 of A288387.
Cf. A000108.

A288545 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals six.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 7, 155, 1204, 4998, 13741, 29267, 55349, 102376, 193208, 409627, 1347712, 7473133, 45994799, 252030406, 1193376317, 4965089180, 18572616542, 63817902108, 205352302948, 630165870922, 1881098184612, 5604337663494, 17257834349925
Offset: 6

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Crossrefs

Column k=6 of A288387.
Cf. A000108.

A288546 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals seven.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 8, 233, 2340, 12232, 40730, 99560, 202520, 382832, 718521, 1365141, 2711069, 6858090, 31187295, 205460160, 1319924619, 7367292450, 35622715506, 152058928294, 585081743348, 2068466589925, 6834153443022, 21423303012910, 64613354395822
Offset: 7

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Crossrefs

Column k=7 of A288387.
Cf. A000108.

A288547 Number of Dyck paths of semilength n such that the minimal number of peaks over all positive levels equals eight.

Original entry on oeis.org

1, 0, 0, 0, 0, 0, 0, 0, 0, 9, 334, 4230, 27453, 110754, 316062, 712689, 1412301, 2682846, 5102356, 9801586, 19171774, 41495990, 137929830, 836146663, 6014616953, 39197383611, 220664327140, 1082883615537, 4718484209429, 18595946630434, 67418929164918
Offset: 8

Views

Author

Alois P. Heinz, Jun 11 2017

Keywords

Crossrefs

Column k=8 of A288387.
Cf. A000108.
Showing 1-10 of 12 results. Next