A133494
Diagonal of the array of iterated differences of A047848.
Original entry on oeis.org
1, 1, 3, 9, 27, 81, 243, 729, 2187, 6561, 19683, 59049, 177147, 531441, 1594323, 4782969, 14348907, 43046721, 129140163, 387420489, 1162261467, 3486784401, 10460353203, 31381059609, 94143178827, 282429536481, 847288609443, 2541865828329, 7625597484987, 22876792454961, 68630377364883
Offset: 0
From _Gus Wiseman_, Jul 15 2020: (Start)
The a(0) = 1 through a(3) = 9 ways to choose a composition of each part of a composition:
() (1) (2) (3)
(1,1) (1,2)
(1),(1) (2,1)
(1,1,1)
(1),(2)
(2),(1)
(1),(1,1)
(1,1),(1)
(1),(1),(1)
(End)
Splittings of partitions are
A323583.
Multiset partitions of partitions are
A001970.
Partitions of each part of a partition are
A063834.
Compositions of each part of a partition are
A075900.
Strict partitions of each part of a strict partition are
A279785.
Compositions of each part of a strict partition are
A304961.
Strict compositions of each part of a composition are
A307068.
Compositions of each part of a strict composition are
A336127.
-
[n eq 0 select 1 else 3^(n-1): n in [0..30]]; // G. C. Greubel, Nov 20 2023
-
a:= n-> ceil(3^(n-1)):
seq(a(n), n=0..30); # Alois P. Heinz, Jul 26 2020
-
CoefficientList[Series[(1 - 2 x)/(1 - 3 x), {x, 0, 50}], x] (* Vladimir Joseph Stephan Orlovsky, Jun 21 2011 *)
Join[{1}, 3^(Range[0, 30])] (* G. C. Greubel, Nov 20 2023 *)
-
a(n)=max(1,3^(n-1)) \\ Charles R Greathouse IV, Jul 07 2011
-
Vec((1-2*x)/(1-3*x) + O(x^100)) \\ Altug Alkan, Oct 30 2015
-
[(3^n + 2*int(n==0))//3 for n in range(31)] # G. C. Greubel, Nov 20 2023
A008778
a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.
Original entry on oeis.org
1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0
G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Francisco Javier de Vega, Some Variants of Integer Multiplication, Axioms (2023) Vol. 12, 905. See p. 15.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
- W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
-
[(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
-
seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
-
Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
-
Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
-
[(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
A022818
Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1
Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 6, 10, 15, 21, 28, 36, ...
1, 5, 13, 26, 45, 71, 105, 148, ...
1, 7, 23, 55, 110, 196, 322, 498, ...
1, 11, 44, 121, 271, 532, 952, 1590, ...
1, 15, 74, 237, 599, 1301, 2541, 4586, ...
1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
...
- Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
- Alois P. Heinz, Antidiagonals n = 1..141
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245. [Take the transpose of Table 2 on p. 241 and omit row 0 and column 0; A(n,k) = M(k,n). - _Petros Hadjicostas_, May 30 2020]
-
A:= proc(n, k) option remember;
`if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
end:
b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
# second Maple program:
b:= proc(n, i, l, k) option remember; `if`(k=0,
`if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 19 2018
-
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
-
P(n, k) = #partitions(n-k, k); /* A008284 */
tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020
A024207
Number of terms in n-th derivative of a function composed with itself 7 times.
Original entry on oeis.org
1, 1, 7, 28, 105, 322, 952, 2541, 6539, 15833, 37148, 83594, 183289, 389520, 809820, 1643375, 3272797, 6390745, 12279337, 23208483, 43252360, 79483096, 144265338, 258673983, 458747540, 804877837, 1398356706, 2406328974, 4104352128, 6940717598, 11643270856
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
a[n_] := a[n, 7];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
A024210
Number of terms in n-th derivative of a function composed with itself 10 times.
Original entry on oeis.org
1, 1, 10, 55, 265, 1045, 3817, 12583, 39148, 114235, 318857, 850576, 2190850, 5451721, 13184711, 31023842, 71286349, 160139911, 352574213, 761567304, 1616713932, 3376143283, 6944345483, 14080091227, 28169087367, 55644767253, 108617341172, 209626751905
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
a[n_] := a[n, 10]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
A038497
Matrix square of partition triangle A008284.
Original entry on oeis.org
1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 7, 8, 5, 2, 1, 11, 15, 10, 5, 2, 1, 15, 23, 18, 10, 5, 2, 1, 22, 38, 31, 20, 10, 5, 2, 1, 30, 56, 52, 34, 20, 10, 5, 2, 1, 42, 86, 83, 60, 36, 20, 10, 5, 2, 1, 56, 123, 129, 97, 63, 36, 20, 10, 5, 2, 1, 77, 181, 198, 158, 105, 65, 36, 20, 10, 5, 2, 1
Offset: 1
1; 2,1; 3,2,1; 5,5,2,1; ...
A355384
Number of pairs (y, v) where y is a composition of n and v is a (not necessarily contiguous) subsequence of y whose length equals the number of distinct parts in y.
Original entry on oeis.org
1, 1, 2, 4, 12, 30, 66, 164, 419, 1049, 2625, 6372, 15451, 37335, 89855, 216523, 518714, 1235897, 2930050, 6911149, 16217817, 37914515, 88304358, 204971388, 474172899, 1093547574, 2513959446, 5761735383, 13165908506, 29998936859, 68164839887, 154478212575
Offset: 0
The initial terms count the following containments:
()() (1)(1) (2)(2) (3)(3) (4)(4)
(11)(1) (21)(21) (31)(31)
(12)(12) (13)(13)
(111)(1) (22)(2)
(211)(11)
(211)(21)
(121)(11)
(121)(12)
(121)(21)
(112)(11)
(112)(12)
(1111)(1)
-
Table[Sum[Length[Union[Subsets[y,{Length[Union[y]]}]]],{y,Join@@Permutations/@IntegerPartitions[n]}],{n,0,5}]
A039805
Matrix cube of partition triangle A008284.
Original entry on oeis.org
1, 3, 1, 6, 3, 1, 13, 9, 3, 1, 23, 19, 9, 3, 1, 44, 42, 22, 9, 3, 1, 74, 80, 48, 22, 9, 3, 1, 129, 154, 99, 51, 22, 9, 3, 1, 210, 273, 193, 105, 51, 22, 9, 3, 1, 345, 484, 362, 212, 108, 51, 22, 9, 3, 1, 542, 815, 651, 401, 218, 108, 51, 22, 9, 3, 1, 858, 1369, 1147
Offset: 1
1; 3,1; 6,3,1; 13,9,3,1; ...
A022817
Number of terms in 7th derivative of a function composed with itself n times.
Original entry on oeis.org
1, 15, 74, 237, 599, 1301, 2541, 4586, 7785, 12583, 19536, 29327, 42783, 60893, 84827, 115956, 155873, 206415, 269686, 348081, 444311, 561429, 702857, 872414, 1074345, 1313351, 1594620, 1923859, 2307327, 2751869, 3264951, 3854696, 4529921, 5300175, 6175778
Offset: 1
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
a:= n-> n*(36+(-356+(645+(355+(39+n)*n)*n)*n)*n)/720:
seq(a(n), n=1..40); # Alois P. Heinz, Aug 18 2012
-
Table[(n/720*(n^5+39*n^4+355*n^3+645*n^2-356*n+36)),{n,1,100}] (* Vincenzo Librandi, Aug 18 2012 *)
A131408
Repeated integer partitions or nested integer partitions.
Original entry on oeis.org
1, 1, 2, 5, 14, 35, 95, 248, 668, 1781, 4799, 12890, 34766, 93647, 252635, 681272, 1838135, 4958738, 13379885, 36100214, 97409045, 262833314, 709207394, 1913652308, 5163654671, 13933178390, 37596275726, 101446960109, 273737216768, 738632652929, 1993073801930
Offset: 0
Let denote * an unlabeled element. Then a(n=3)=5 because we have [ *,*,* ], [ *, * ][ * ], [[ *,* ]][[ * ]], [[ *,* ][ * ]], [ * ][ * ][ * ].
From _Gus Wiseman_, Jul 20 2018: (Start)
The a(4) = 14 sequences of integer partitions:
(4), (31), (22), (211),
(4)(1), (31)(2), (22)(2), (211)(3), (211)(21),
(31)(2)(1), (22)(2)(1), (211)(3)(1), (211)(21)(2),
(211)(21)(2)(1).
(End)
-
A000041 := proc(n) combinat[numbpart](n) ; end: A008284 := proc(n,k) if k = 1 or k = n then 1; elif k > n then 0 ; else procname(n-1,k-1)+procname(n-k,k) ; fi ; end: A131408 := proc(n) option remember; local i ; if n <= 2 then n; else A000041(n)+add(A008284(n,i)*procname(i),i=2..n-1) ; fi ; end: for n from 1 to 40 do printf("%d,",A131408(n)) ; od: # R. J. Mathar, Aug 07 2008
# second Maple program:
b:= proc(n, i) option remember; `if`(n=0 or i=1, 1,
b(n, i-1) + b(n-i, min(n-i, i)))
end:
a:= proc(n) option remember; b(n$2)+
add(b(n-i, min(n-i, i))*a(i), i=2..n-1)
end:
seq(a(n), n=0..30); # Alois P. Heinz, Sep 03 2020
-
t[, 1] = 1; t[n, k_] /; 1 <= k <= n := t[n, k] = Sum[t[n-i, k-1], {i, 1, n-1}] - Sum[t[n-i, k], {i, 1, k-1}]; t[, ] = 0; a[1]=1; a[2]=2; a[n_] := a[n] = PartitionsP[n] + Sum[t[n, i]*a[i], {i, 2, n-1}]; Table[a[n], {n, 1, 40}] (* Jean-François Alcover, Feb 02 2017 *)
roo[n_]:=If[n==1,{{{1}}},Join@@Cases[Most[IntegerPartitions[n]],y_:>Prepend[(Prepend[#,y]&/@roo[Length[y]]),{y}]]];
Table[Length[roo[n]],{n,10}] (* Gus Wiseman, Jul 20 2018 *)
Showing 1-10 of 28 results.
Comments