A008778
a(n) = (n+1)*(n^2 +8*n +6)/6. Number of n-dimensional partitions of 4. Number of terms in 4th derivative of a function composed with itself n times.
Original entry on oeis.org
1, 5, 13, 26, 45, 71, 105, 148, 201, 265, 341, 430, 533, 651, 785, 936, 1105, 1293, 1501, 1730, 1981, 2255, 2553, 2876, 3225, 3601, 4005, 4438, 4901, 5395, 5921, 6480, 7073, 7701, 8365, 9066, 9805, 10583, 11401, 12260, 13161, 14105, 15093, 16126, 17205, 18331
Offset: 0
G.f. = 1 + 5*x + 13*x^2 + 26*x^3 + 45*x^4 + 71*x^5 + 105*x^6 + 148*x^7 + 201*x^8 + ...
- G. E. Andrews, The Theory of Partitions, Addison-Wesley, 1976, p. 190 eq. (11.4.7).
- Vincenzo Librandi, Table of n, a(n) for n = 0..10000
- P. Chinn and S. Heubach, Integer Sequences Related to Compositions without 2's, J. Integer Seqs., Vol. 6, 2003.
- Francisco Javier de Vega, Some Variants of Integer Multiplication, Axioms (2023) Vol. 12, 905. See p. 15.
- Milan Janjic, Two Enumerative Functions
- Milan Janjic, Binomial Coefficients and Enumeration of Restricted Words, Journal of Integer Sequences, 2016, Vol 19, #16.7.3.
- László Németh, Tetrahedron trinomial coefficient transform, arXiv:1905.13475 [math.CO], 2019.
- W. C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245.
- Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
-
List([0..50], n-> (n+1)*(n^2 +8*n +6)/6); # G. C. Greubel, Sep 11 2019
-
[(n+1)*(n^2+8*n+6)/6: n in [0..50]]; // Vincenzo Librandi, May 21 2011
-
seq(1+4*k+4*binomial(k, 2)+binomial(k, 3), k=0..45);
-
Table[(n+1)*(n^2+8*n+6)/6, {n,0,50}] (* Vladimir Joseph Stephan Orlovsky, Oct 13 2009, modified by G. C. Greubel, Sep 11 2019 *)
LinearRecurrence[{4,-6,4,-1}, {1,5,13,26}, 51] (* G. C. Greubel, Sep 11 2019 *)
-
Vec((1+x-x^2)/(1-x)^4 + O(x^50)) \\ Altug Alkan, Jan 07 2016
-
[(n+1)*(n^2 +8*n +6)/6 for n in (0..50)] # G. C. Greubel, Sep 11 2019
A022811
Number of terms in n-th derivative of a function composed with itself 3 times.
Original entry on oeis.org
1, 1, 3, 6, 13, 23, 44, 74, 129, 210, 345, 542, 858, 1310, 2004, 2996, 4467, 6540, 9552, 13744, 19711, 27943, 39452, 55172, 76865, 106200, 146173, 199806, 272075, 368247, 496642, 666201, 890602, 1184957, 1571417, 2075058, 2731677, 3582119, 4683595, 6102256
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
From _Gus Wiseman_, Jul 19 2018: (Start)
Using the chain rule, we compute the second derivative of f(f(f(x))) to be the following sum of a(2) = 3 terms.
d^2/dx^2 f(f(f(x))) =
f'(f(x)) f'(f(f(x))) f''(x) +
f'(x)^2 f'(f(f(x))) f''(f(x)) +
f'(x)^2 f'(f(x))^2 f''(f(f(x))).
(End)
- W. C. Yang, Derivatives of self-compositions of functions, preprint, 1997.
Cf.
A008778,
A022812,
A022813,
A022814,
A022815,
A022816,
A022817,
A024207,
A024208,
A024209,
A024210,
A131408.
-
A022811 := proc(n) local a,P,p,lp ; a := 0 ; P := combinat[partition](n) ; for p in P do lp := nops(p) ; a := a+combinat[numbpart](lp) ; od: RETURN(a) ; end: for n from 1 do print(n,A022811(n)) ; od: # R. J. Mathar, Aug 12 2008
-
a[n_] := Total[PartitionsP[Length[#]]& /@ IntegerPartitions[n]];
Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 80}] (* Jean-François Alcover, Apr 28 2017 *)
Table[Length[1+D[f[f[f[x]]],{x,n}]]-1,{n,10}] (* Gus Wiseman, Jul 19 2018 *)
Typo corrected by Neven Juric, Mar 25 2013
A022818
Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).
Original entry on oeis.org
1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1
Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
1, 1, 1, 1, 1, 1, 1, 1, ...
1, 2, 3, 4, 5, 6, 7, 8, ...
1, 3, 6, 10, 15, 21, 28, 36, ...
1, 5, 13, 26, 45, 71, 105, 148, ...
1, 7, 23, 55, 110, 196, 322, 498, ...
1, 11, 44, 121, 271, 532, 952, 1590, ...
1, 15, 74, 237, 599, 1301, 2541, 4586, ...
1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
...
- Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
- Alois P. Heinz, Antidiagonals n = 1..141
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Warren P. Johnson, The curious history of Faà di Bruno's formula, American Mathematical Monthly, 109 (2002), 217-234.
- Winston C. Yang, Derivatives are essentially integer partitions, Discrete Mathematics, 222(1-3), July 2000, 235-245. [Take the transpose of Table 2 on p. 241 and omit row 0 and column 0; A(n,k) = M(k,n). - _Petros Hadjicostas_, May 30 2020]
-
A:= proc(n, k) option remember;
`if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
end:
b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
# second Maple program:
b:= proc(n, i, l, k) option remember; `if`(k=0,
`if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
end:
A:= (n, k)-> b(n$2, 0, k):
seq(seq(A(n, 1+d-n), n=1..d), d=1..12); # Alois P. Heinz, Jul 19 2018
-
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
-
P(n, k) = #partitions(n-k, k); /* A008284 */
tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020
A024207
Number of terms in n-th derivative of a function composed with itself 7 times.
Original entry on oeis.org
1, 1, 7, 28, 105, 322, 952, 2541, 6539, 15833, 37148, 83594, 183289, 389520, 809820, 1643375, 3272797, 6390745, 12279337, 23208483, 43252360, 79483096, 144265338, 258673983, 458747540, 804877837, 1398356706, 2406328974, 4104352128, 6940717598, 11643270856
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
a[n_] := a[n, 7];
Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
A024210
Number of terms in n-th derivative of a function composed with itself 10 times.
Original entry on oeis.org
1, 1, 10, 55, 265, 1045, 3817, 12583, 39148, 114235, 318857, 850576, 2190850, 5451721, 13184711, 31023842, 71286349, 160139911, 352574213, 761567304, 1616713932, 3376143283, 6944345483, 14080091227, 28169087367, 55644767253, 108617341172, 209626751905
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
a[n_] := a[n, 10]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
A024208
Number of terms in n-th derivative of a function composed with itself 8 times.
Original entry on oeis.org
1, 1, 8, 36, 148, 498, 1590, 4586, 12644, 32775, 81901, 196085, 455772, 1025779, 2252674, 4823546, 10116553, 20783490, 41949270, 83211931, 162552093, 312850854, 594086542, 1113610526, 2062796698, 3777567977, 6844786250, 12276620372, 21809737429, 38391720375
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
A024209
Number of terms in n-th derivative of a function composed with itself 9 times.
Original entry on oeis.org
1, 1, 9, 45, 201, 735, 2517, 7785, 22857, 63024, 166819, 422537, 1035971, 2456694, 5672347, 12756334, 28053280, 60371967, 127479247, 264311585, 539102751, 1082474167, 2142579168, 4183251750, 8064722973, 15360809911, 28928858208, 53896616704, 99398216733
Offset: 0
Winston C. Yang (yang(AT)math.wisc.edu)
- W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.
-
b[n_, i_, k_] := b[n, i, k] = If[nJean-François Alcover, Apr 28 2017, after Alois P. Heinz *)
Showing 1-7 of 7 results.
Comments