cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 30 results. Next

A026052 (d(n)-r(n))/2, where d = A008778 and r is the periodic sequence with fundamental period (1,1,0,1).

Original entry on oeis.org

2, 6, 13, 22, 35, 52, 74, 100, 132, 170, 215, 266, 325, 392, 468, 552, 646, 750, 865, 990, 1127, 1276, 1438, 1612, 1800, 2002, 2219, 2450, 2697, 2960, 3240, 3536, 3850, 4182, 4533, 4902, 5291, 5700, 6130, 6580, 7052, 7546, 8063, 8602, 9165, 9752, 10364, 11000, 11662, 12350, 13065, 13806, 14575
Offset: 2

Views

Author

Keywords

Formula

a(n)=(n + 2)*(n^2 + 10*n + 15)/12 - 0.375 + 0.125*( - 1)^n - 0.25*cos(n*Pi/2) [From Richard Choulet, Dec 13 2008]

A026053 (d(n)-r(n))/5, where d = A008778 and r is the periodic sequence with fundamental period (0,3,1,0,1).

Original entry on oeis.org

1, 2, 5, 9, 14, 21, 29, 40, 53, 68, 86, 106, 130, 157, 187, 221, 258, 300, 346, 396, 451, 510, 575, 645, 720, 801, 887, 980, 1079, 1184, 1296, 1414, 1540, 1673, 1813, 1961, 2116, 2280, 2452, 2632, 2821, 3018, 3225, 3441, 3666, 3901, 4145, 4400, 4665, 4940, 5226, 5522, 5830, 6149, 6479, 6821
Offset: 2

Views

Author

Keywords

Crossrefs

A152892 [From Richard Choulet, Dec 14 2008]

Formula

a(n)=(n + 2)*(n^2 + 10*n + 15)/30 - 1/5*(1 + ( - 1/2 + 3/10*5^(1/2))*cos(2*n*Pi/5) + (1/5*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/10*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(2*n*Pi/5) + ( - 1/2 - 3/10*5^(1/2))*cos(4*n*Pi/5) + ( - 1/10*2^(1/2)*(5 + 5^(1/2))^(1/2) + 1/5*2^(1/2)*(5 - 5^(1/2))^(1/2))*sin(4*n*Pi/5)) [From Richard Choulet, Dec 14 2008]
a(n)= 3*a(n-1) -3*a(n-2) +a(n-3) +a(n-5) -3*a(n-6) +3*a(n-7) -a(n-8). G.f.: -x^2*(-1+x-2*x^2+x^3)/( (x^4+x^3+x^2+x+1) * (x-1)^4 ). [From R. J. Mathar, Oct 05 2009]

A000096 a(n) = n*(n+3)/2.

Original entry on oeis.org

0, 2, 5, 9, 14, 20, 27, 35, 44, 54, 65, 77, 90, 104, 119, 135, 152, 170, 189, 209, 230, 252, 275, 299, 324, 350, 377, 405, 434, 464, 495, 527, 560, 594, 629, 665, 702, 740, 779, 819, 860, 902, 945, 989, 1034, 1080, 1127, 1175, 1224, 1274, 1325, 1377, 1430, 1484, 1539, 1595, 1652, 1710, 1769
Offset: 0

Views

Author

Keywords

Comments

For n >= 1, a(n) is the maximal number of pieces that can be obtained by cutting an annulus with n cuts. See illustration. - Robert G. Wilson v
n(n-3)/2 (n >= 3) is the number of diagonals of an n-gon. - Antreas P. Hatzipolakis (xpolakis(AT)otenet.gr)
n(n-3)/2 (n >= 4) is the degree of the third-smallest irreducible presentation of the symmetric group S_n (cf. James and Kerber, Appendix 1).
a(n) is also the multiplicity of the eigenvalue (-2) of the triangle graph Delta(n+1). (See p. 19 in Biggs.) - Felix Goldberg (felixg(AT)tx.technion.ac.il), Nov 25 2001
For n > 3, a(n-3) = dimension of the traveling salesman polytope T(n). - Benoit Cloitre, Aug 18 2002
Also counts quasi-dominoes (quasi-2-ominoes) on an n X n board. Cf. A094170-A094172. - Jon Wild, May 07 2004
Coefficient of x^2 in (1 + x + 2*x^2)^n. - Michael Somos, May 26 2004
a(n) is the number of "prime" n-dimensional polyominoes. A "prime" n-polyomino cannot be formed by connecting any other n-polyominoes except for the n-monomino and the n-monomino is not prime. E.g., for n=1, the 1-monomino is the line of length 1 and the only "prime" 1-polyominoes are the lines of length 2 and 3. This refers to "free" n-dimensional polyominoes, i.e., that can be rotated along any axis. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
Solutions to the quadratic equation q(m, r) = (-3 +- sqrt(9 + 8(m - r))) / 2, where m - r is included in a(n). Let t(m) = the triangular number (A000217) less than some number k and r = k - t(m). If k is neither prime nor a power of two and m - r is included in A000096, then m - q(m, r) will produce a value that shares a divisor with k. - Andrew S. Plewe, Jun 18 2005
Sum_{k=2..n+1} 4/(k*(k+1)*(k-1)) = ((n+3)*n)/((n+2)*(n+1)). Numerator(Sum_{k=2..n+1} 4/(k*(k+1)*(k-1))) = (n+3)*n/2. - Alexander Adamchuk, Apr 11 2006
Number of rooted trees with n+3 nodes of valence 1, no nodes of valence 2 and exactly two other nodes. I.e., number of planted trees with n+2 leaves and exactly two branch points. - Theo Johnson-Freyd (theojf(AT)berkeley.edu), Jun 10 2007
If X is an n-set and Y a fixed 2-subset of X then a(n-2) is equal to the number of (n-2)-subsets of X intersecting Y. - Milan Janjic, Jul 30 2007
For n >= 1, a(n) is the number of distinct shuffles of the identity permutation on n+1 letters with the identity permutation on 2 letters (12). - Camillia Smith Barnes, Oct 04 2008
If s(n) is a sequence defined as s(1) = x, s(n) = kn + s(n-1) + p for n > 1, then s(n) = a(n-1)*k + (n-1)*p + x. - Gary Detlefs, Mar 04 2010
The only primes are a(1) = 2 and a(2) = 5. - Reinhard Zumkeller, Jul 18 2011
a(n) = m such that the (m+1)-th triangular number minus the m-th triangular number is the (n+1)-th triangular number: (m+1)(m+2)/2 - m(m+1)/2 = (n+1)(n+2)/2. - Zak Seidov, Jan 22 2012
For n >= 1, number of different values that Sum_{k=1..n} c(k)*k can take where the c(k) are 0 or 1. - Joerg Arndt, Jun 24 2012
On an n X n chessboard (n >= 2), the number of possible checkmate positions in the case of king and rook versus a lone king is 0, 16, 40, 72, 112, 160, 216, 280, 352, ..., which is 8*a(n-2). For a 4 X 4 board the number is 40. The number of positions possible was counted including all mirror images and rotations for all four sides of the board. - Jose Abutal, Nov 19 2013
If k = a(i-1) or k = a(i+1) and n = k + a(i), then C(n, k-1), C(n, k), C(n, k+1) are three consecutive binomial coefficients in arithmetic progression and these are all the solutions. There are no four consecutive binomial coefficients in arithmetic progression. - Michael Somos, Nov 11 2015
a(n-1) is also the number of independent components of a symmetric traceless tensor of rank 2 and dimension n >= 1. - Wolfdieter Lang, Dec 10 2015
Numbers k such that 8k + 9 is a square. - Juri-Stepan Gerasimov, Apr 05 2016
Let phi_(D,rho) be the average value of a generic degree D monic polynomial f when evaluated at the roots of the rho-th derivative of f, expressed as a polynomial in the averaged symmetric polynomials in the roots of f. [See the Wojnar et al. link] The "last" term of phi_(D,rho) is a multiple of the product of all roots of f; the coefficient is expressible as a polynomial h_D(N) in N:=D-rho. These polynomials are of the form h_D(N)= ((-1)^D/(D-1)!)*(D-N)*N^chi*g_D(N) where chi = (1 if D is odd, 0 if D is even) and g_D(N) is a monic polynomial of degree (D-2-chi). Then a(n) are the negated coefficients of the next to the highest order term in the polynomials N^chi*g_D(N), starting at D=3. - Gregory Gerard Wojnar, Jul 19 2017
For n >= 2, a(n) is the number of summations required to solve the linear regression of n variables (n-1 independent variables and 1 dependent variable). - Felipe Pedraza-Oropeza, Dec 07 2017
For n >= 2, a(n) is the number of sums required to solve the linear regression of n variables: 5 for two variables (sums of X, Y, X^2, Y^2, X*Y), 9 for 3 variables (sums of X1, X2, Y1, X1^2, X1*X2, X1*Y, X2^2, X2*Y, Y^2), and so on. - Felipe Pedraza-Oropeza, Jan 11 2018
a(n) is the area of a triangle with vertices at (n, n+1), ((n+1)*(n+2)/2, (n+2)*(n+3)/2), ((n+2)^2, (n+3)^2). - J. M. Bergot, Jan 25 2018
Number of terms less than 10^k: 1, 4, 13, 44, 140, 446, 1413, 4471, 14141, 44720, 141420, 447213, ... - Muniru A Asiru, Jan 25 2018
a(n) is also the number of irredundant sets in the (n+1)-path complement graph for n > 2. - Eric W. Weisstein, Apr 11 2018
a(n) is also the largest number k such that the largest Dyck path of the symmetric representation of sigma(k) has exactly n peaks, n >= 1. (Cf. A237593.) - Omar E. Pol, Sep 04 2018
For n > 0, a(n) is the number of facets of associahedra. Cf. A033282 and A126216 and their refinements A111785 and A133437 for related combinatorial and analytic constructs. See p. 40 of Hanson and Sha for a relation to projective spaces and string theory. - Tom Copeland, Jan 03 2021
For n > 0, a(n) is the number of bipartite graphs with 2n or 2n+1 edges, no isolated vertices, and a stable set of cardinality 2. - Christian Barrientos, Jun 13 2022
For n >= 2, a(n-2) is the number of permutations in S_n which are the product of two different transpositions of adjacent points. - Zbigniew Wojciechowski, Mar 31 2023
a(n) represents the optimal stop-number to achieve the highest running score for the Greedy Pig game with an (n-1)-sided die with a loss on a 1. The total at which one should stop is a(s-1), e.g. for a 6-sided die, one should pass the die at 20. See Sparks and Haran. - Nicholas Stefan Georgescu, Jun 09 2024

Examples

			G.f. = 2*x + 5*x^2 + 9*x^3 + 14*x^4 + 20*x^5 + 27*x^6 + 35*x^7 + 44*x^8 + 54*x^9 + ...
		

References

  • M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), Table 22.7, p. 797.
  • Norman Biggs, Algebraic Graph Theory, 2nd ed. Cambridge University Press, 1993.
  • G. James and A. Kerber, The Representation Theory of the Symmetric Group, Encyclopedia of Maths. and its Appls., Vol. 16, Addison-Wesley, 1981, Reading, MA, U.S.A.
  • D. G. Kendall et al., Shape and Shape Theory, Wiley, 1999; see p. 4.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Complement of A007401. Column 2 of A145324. Column of triangle A014473, first skew subdiagonal of A033282, a diagonal of A079508.
Occurs as a diagonal in A074079/A074080, i.e., A074079(n+3, n) = A000096(n-1) for all n >= 2. Also A074092(n) = 2^n * A000096(n-1) after n >= 2.
Cf. numbers of the form n*(n*k-k+4)/2 listed in A226488.
Similar sequences are listed in A316466.

Programs

Formula

G.f.: A(x) = x*(2-x)/(1-x)^3. a(n) = binomial(n+1, n-1) + binomial(n, n-1).
Connection with triangular numbers: a(n) = A000217(n+1) - 1.
a(n) = a(n-1) + n + 1. - Bryan Jacobs (bryanjj(AT)gmail.com), Apr 01 2005
a(n) = 2*t(n) - t(n-1) where t() are the triangular numbers, e.g., a(5) = 2*t(5) - t(4) = 2*15 - 10 = 20. - Jon Perry, Jul 23 2003
a(-3-n) = a(n). - Michael Somos, May 26 2004
2*a(n) = A008778(n) - A105163(n). - Creighton Dement, Apr 15 2005
a(n) = C(3+n, 2) - C(3+n, 1). - Zerinvary Lajos, Dec 09 2005
a(n) = A067550(n+1) / A067550(n). - Alexander Adamchuk, May 20 2006
a(n) = A126890(n,1) for n > 0. - Reinhard Zumkeller, Dec 30 2006
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Paul Curtz, Jan 02 2008
Starting (2, 5, 9, 14, ...) = binomial transform of (2, 3, 1, 0, 0, 0, ...). - Gary W. Adamson, Jul 03 2008
For n >= 0, a(n+2) = b(n+1) - b(n), where b(n) is the sequence A005586. - K.V.Iyer, Apr 27 2009
A002262(a(n)) = n. - Reinhard Zumkeller, May 20 2009
Let A be the Toeplitz matrix of order n defined by: A[i,i-1]=-1, A[i,j]=Catalan(j-i), (i<=j), and A[i,j]=0, otherwise. Then, for n>=1, a(n-1)=coeff(charpoly(A,x),x^(n-2)). - Milan Janjic, Jul 08 2010
a(n) = Sum_{k=1..n} (k+1)!/k!. - Gary Detlefs, Aug 03 2010
a(n) = n(n+1)/2 + n = A000217(n) + n. - Zak Seidov, Jan 22 2012
E.g.f.: F(x) = 1/2*x*exp(x)*(x+4) satisfies the differential equation F''(x) - 2*F'(x) + F(x) = exp(x). - Peter Bala, Mar 14 2012
a(n) = binomial(n+3, 2) - (n+3). - Robert G. Wilson v, Mar 15 2012
a(n) = A181971(n+1, 2) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = A214292(n+2, 1). - Reinhard Zumkeller, Jul 12 2012
G.f.: -U(0) where U(k) = 1 - 1/((1-x)^2 - x*(1-x)^4/(x*(1-x)^2 - 1/U(k+1))); (continued fraction, 3-step). - Sergei N. Gladkovskii, Sep 27 2012
A023532(a(n)) = 0. - Reinhard Zumkeller, Dec 04 2012
a(n) = A014132(n,n) for n > 0. - Reinhard Zumkeller, Dec 12 2012
a(n-1) = (1/n!)*Sum_{j=0..n} binomial(n,j)*(-1)^(n-j)*j^n*(j-1). - Vladimir Kruchinin, Jun 06 2013
a(n) = 2n - floor(n/2) + floor(n^2/2). - Wesley Ivan Hurt, Jun 15 2013
a(n) = Sum_{i=2..n+1} i. - Wesley Ivan Hurt, Jun 28 2013
Sum_{n>0} 1/a(n) = 11/9. - Enrique Pérez Herrero, Nov 26 2013
a(n) = Sum_{i=1..n} (n - i + 2). - Wesley Ivan Hurt, Mar 31 2014
A023531(a(n)) = 1. - Reinhard Zumkeller, Feb 14 2015
For n > 0: a(n) = A101881(2*n-1). - Reinhard Zumkeller, Feb 20 2015
a(n) + a(n-1) = A008865(n+1) for all n in Z. - Michael Somos, Nov 11 2015
a(n+1) = A127672(4+n, n), n >= 0, where A127672 gives the coefficients of the Chebyshev C polynomials. See the Abramowitz-Stegun reference. - Wolfdieter Lang, Dec 10 2015
a(n) = (n+1)^2 - A000124(n). - Anton Zakharov, Jun 29 2016
Dirichlet g.f.: (zeta(s-2) + 3*zeta(s-1))/2. - Ilya Gutkovskiy, Jun 30 2016
a(n) = 2*A000290(n+3) - 3*A000217(n+3). - J. M. Bergot, Apr 04 2018
a(n) = Stirling2(n+2, n+1) - 1. - Peter Luschny, Jan 05 2021
Sum_{n>=1} (-1)^(n+1)/a(n) = 4*log(2)/3 - 5/9. - Amiram Eldar, Jan 10 2021
From Amiram Eldar, Jan 20 2021: (Start)
Product_{n>=1} (1 + 1/a(n)) = 3.
Product_{n>=1} (1 - 1/a(n)) = 3*cos(sqrt(17)*Pi/2)/(4*Pi). (End)
Product_{n>=0} a(4*n+1)*a(4*n+4)/(a(4*n+2)*a(4*n+3)) = Pi/6. - Michael Jodl, Apr 05 2025

A005902 Centered icosahedral (or cuboctahedral) numbers, also crystal ball sequence for f.c.c. lattice.

Original entry on oeis.org

1, 13, 55, 147, 309, 561, 923, 1415, 2057, 2869, 3871, 5083, 6525, 8217, 10179, 12431, 14993, 17885, 21127, 24739, 28741, 33153, 37995, 43287, 49049, 55301, 62063, 69355, 77197, 85609, 94611, 104223, 114465, 125357, 136919, 149171, 162133, 175825, 190267, 205479
Offset: 0

Views

Author

Keywords

Comments

Called "magic numbers" in some chemical contexts.
Partial sums of A005901(n). - Lekraj Beedassy, Oct 30 2003
Equals binomial transform of [1, 12, 30, 20, 0, 0, 0, ...]. - Gary W. Adamson, Aug 01 2008
Crystal ball sequence for A_3 lattice. - Michael Somos, Jun 03 2012

Examples

			a(4) = 147 = (1, 3, 3, 1) dot (1, 12, 30, 20) = (1 + 36 + 90 + 20). - _Gary W. Adamson_, Aug 01 2008
G.f. = 1 + 13*x + 55*x^2 + 147*x^3 + 309*x^4 + 561*x^5 + 923*x^6 + 1415*x^7 + ...
		

References

  • H. S. M. Coxeter, Polyhedral numbers, pp. 25-35 of R. S. Cohen, J. J. Stachel and M. W. Wartofsky, eds., For Dirk Struik: Scientific, historical and political essays in honor of Dirk J. Struik, Reidel, Dordrecht, 1974.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

(1/12)*t*(2*n^3-3*n^2+n)+2*n-1 for t = 2, 4, 6, ... gives A049480, A005894, A063488, A001845, A063489, A005898, A063490, A057813, A063491, A005902, A063492, A005917, A063493, A063494, A063495, A063496.
The 28 uniform 3D tilings: cab: A299266, A299267; crs: A299268, A299269; fcu: A005901, A005902; fee: A299259, A299265; flu-e: A299272, A299273; fst: A299258, A299264; hal: A299274, A299275; hcp: A007899, A007202; hex: A005897, A005898; kag: A299256, A299262; lta: A008137, A299276; pcu: A005899, A001845; pcu-i: A299277, A299278; reo: A299279, A299280; reo-e: A299281, A299282; rho: A008137, A299276; sod: A005893, A005894; sve: A299255, A299261; svh: A299283, A299284; svj: A299254, A299260; svk: A010001, A063489; tca: A299285, A299286; tcd: A299287, A299288; tfs: A005899, A001845; tsi: A299289, A299290; ttw: A299257, A299263; ubt: A299291, A299292; bnn: A007899, A007202. See the Proserpio link in A299266 for overview.

Programs

  • Magma
    [(2*n+1)*(5*n^2+5*n+3)/3: n in [0..30]]; // G. C. Greubel, Dec 01 2017
    
  • Maple
    A005902 := n -> (2*n+1)*(5*n^2+5*n+3)/3;
    A005902:=(z+1)*(z**2+8*z+1)/(z-1)**4; # Simon Plouffe in his 1992 dissertation
  • Mathematica
    f[n_] := (2n + 1)(5n^2 + 5n + 3)/3; Array[f, 36, 0] (* Robert G. Wilson v, Feb 02 2011 *)
    LinearRecurrence[{4,-6,4,-1},{1,13,55,147},50] (* Harvey P. Dale, Oct 08 2015 *)
    CoefficientList[Series[(x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4, {x, 0, 50}], x] (* Indranil Ghosh, Apr 08 2017 *)
  • PARI
    {a(n) = (2*n + 1) * (5*n^2 + 5*n + 3) / 3}; /* Michael Somos, Jun 03 2012 */
    
  • PARI
    x='x+O('x^50); Vec((x^3 + 9*x^2 + 9*x + 1)/(x - 1)^4) \\ Indranil Ghosh, Apr 08 2017
    
  • Python
    def a(n): return (2*n+1)*(5*n**2+5*n+3)//3
    print([a(n) for n in range(40)]) # Michael S. Branicky, Jan 13 2021

Formula

a(n) = (2*n+1)*(5*n^2+5*n+3)/3.
For n > 0, n*a(n) = (Sum_{i=0..n-1} a(i)) + 2*A005891(n)*A000217(n). - Bruno Berselli, Feb 02 2011
a(-1 - n) = -a(n). - Michael Somos, Jun 03 2012
From Indranil Ghosh, Apr 08 2017: (Start)
G.f.: (x^3 + 9x^2 + 9x + 1)/(x - 1)^4.
E.g.f.: (1/3)*exp(x)*(10x^3 + 45x^2 + 36x + 3).
(End)
a(n) = A100171(n+1) - A008778(n-1) = A100174(n+1) - A000290(n) = A005917(n+1) - A006331(n) = A051673(n+1) + A000578(n). - Bruce J. Nicholson, Jul 05 2018

A022811 Number of terms in n-th derivative of a function composed with itself 3 times.

Original entry on oeis.org

1, 1, 3, 6, 13, 23, 44, 74, 129, 210, 345, 542, 858, 1310, 2004, 2996, 4467, 6540, 9552, 13744, 19711, 27943, 39452, 55172, 76865, 106200, 146173, 199806, 272075, 368247, 496642, 666201, 890602, 1184957, 1571417, 2075058, 2731677, 3582119, 4683595, 6102256
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

Comments

This also counts a restricted set of plane partitions of n. Each element of the set which contains the A000041(n) partitions of n can be converted into plane partitions by insertion of line feeds at some or all places of the "pluses." Since the length of rows in plane partitions must be nonincreasing, there are only A000041(L(P)) ways to comply with this rule, where L(P) is the number of terms in that particular partition. Example for n=4: consider all five partitions 4 = 3+1 = 2+2 = 2+1+1 = 1+1+1+1 of four. The associated a(4)=13 plane partitions are 4, 31, 3|1, 22, 2|2, 211, 21|1, 2|1|1, 1111, 111|1, 11|11, 11|1|1 and 1|1|1|1, where the bar represents start of the next row, where a(4) = A000041(L(4)) + A000041(L(3+1)) + A000041(L(2+2)) + A000041(L(2+1+1))+ A000041(L(1+1+1+1)) = A000041(1) + A000041(2) + A000041(2) + A000041(3) + A000041(4). By construction from sorted partitions, all the plane partitions are strictly decreasing along each row and each column. - R. J. Mathar, Aug 12 2008
Also the number of pairs of integer partitions, the first with sum n and the second with sum equal to the length of the first. - Gus Wiseman, Jul 19 2018

Examples

			From _Gus Wiseman_, Jul 19 2018: (Start)
Using the chain rule, we compute the second derivative of f(f(f(x))) to be the following sum of a(2) = 3 terms.
  d^2/dx^2 f(f(f(x))) =
  f'(f(x)) f'(f(f(x))) f''(x) +
  f'(x)^2 f'(f(f(x))) f''(f(x)) +
  f'(x)^2 f'(f(x))^2 f''(f(f(x))).
(End)
		

References

  • W. C. Yang, Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Column k=3 of A022818.
First column of A039805.
A row or column of A081718.

Programs

  • Maple
    A022811 := proc(n) local a,P,p,lp ; a := 0 ; P := combinat[partition](n) ; for p in P do lp := nops(p) ; a := a+combinat[numbpart](lp) ; od: RETURN(a) ; end: for n from 1 do print(n,A022811(n)) ; od: # R. J. Mathar, Aug 12 2008
  • Mathematica
    a[n_] := Total[PartitionsP[Length[#]]& /@ IntegerPartitions[n]];
    Table[an = a[n]; Print["a(", n, ") = ", an]; an, {n, 0, 80}] (* Jean-François Alcover, Apr 28 2017 *)
    Table[Length[1+D[f[f[f[x]]],{x,n}]]-1,{n,10}] (* Gus Wiseman, Jul 19 2018 *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = Sum_{i=0..m} p(m,i)*a(n-1,i).
G.f.: Sum_{k>=0} p(k) * x^k / Product_{j=1..k} (1 - x^j), where p(k) = number of partitions of k. - Ilya Gutkovskiy, Jan 28 2020

Extensions

Typo corrected by Neven Juric, Mar 25 2013

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A022818 Square array read by antidiagonals: A(n,k) = number of terms in the n-th derivative of a function composed with itself k times (n, k >= 1).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 3, 1, 1, 4, 6, 5, 1, 1, 5, 10, 13, 7, 1, 1, 6, 15, 26, 23, 11, 1, 1, 7, 21, 45, 55, 44, 15, 1, 1, 8, 28, 71, 110, 121, 74, 22, 1, 1, 9, 36, 105, 196, 271, 237, 129, 30, 1, 1, 10, 45, 148, 322, 532, 599, 468, 210, 42, 1, 1, 11, 55, 201, 498, 952, 1301, 1309, 867, 345, 56, 1
Offset: 1

Views

Author

Keywords

Examples

			Square array A(n,k) (with rows n >= 1 and columns k >= 1) begins:
  1,  1,   1,   1,    1,    1,    1,     1, ...
  1,  2,   3,   4,    5,    6,    7,     8, ...
  1,  3,   6,  10,   15,   21,   28,    36, ...
  1,  5,  13,  26,   45,   71,  105,   148, ...
  1,  7,  23,  55,  110,  196,  322,   498, ...
  1, 11,  44, 121,  271,  532,  952,  1590, ...
  1, 15,  74, 237,  599, 1301, 2541,  4586, ...
  1, 22, 129, 468, 1309, 3101, 6539, 12644, ...
  ...
		

References

  • Winston C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Main diagonal gives: A192435.

Programs

  • Maple
    A:= proc(n, k) option remember;
          `if`(k=1, 1, add(b(n, n, i)*A(i, k-1), i=0..n))
        end:
    b:= proc(n, i, k) option remember; `if`(nAlois P. Heinz, Aug 18 2012
    # second Maple program:
    b:= proc(n, i, l, k) option remember; `if`(k=0,
          `if`(n<2, 1, 0), `if`(n=0 or i=1, b(l+n$2, 0, k-1),
             b(n, i-1, l, k) +b(n-i, min(n-i, i), l+1, k)))
        end:
    A:= (n, k)->  b(n$2, 0, k):
    seq(seq(A(n, 1+d-n), n=1..d), d=1..12);  # Alois P. Heinz, Jul 19 2018
  • Mathematica
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]]; b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n-i*j, i-1, k-j], {j, 0, Min[n/i, k]}]]]]; Table[Table[a[n, 1+d-n], {n, 1, d}], {d, 1, 12}] // Flatten (* Jean-François Alcover, Jan 14 2014, translated from Alois P. Heinz's Maple code *)
  • PARI
    P(n, k) = #partitions(n-k, k); /* A008284 */
    tabl(nn) = {M = matrix(nn, nn, n, k, 0); for(n=1, nn, M[n, 1] = 1; ); for(n=1, nn, for(k=2, nn, M[n, k] = sum(s=1, n, P(n, s)*M[s, k-1]))); for (n=1, nn, for (k=1, nn, print1(M[n, k], ", "); ); print(); ); } \\ Petros Hadjicostas, May 30 2020

Formula

From Petros Hadjicostas, May 30 2020: (Start)
A(n,k) = Sum_{s=1..n} A008284(n,s)*A(s,k-1) for n >= 1 and k >= 2 with A(n,1) = 1 for n >= 1.
A(n,k) = Sum_{s=1..n} binomial(k,s-1)*A081719(n-1,s-1) for n, k >= 1. (End)

Extensions

Edited by Alois P. Heinz, Aug 18 2012

A024207 Number of terms in n-th derivative of a function composed with itself 7 times.

Original entry on oeis.org

1, 1, 7, 28, 105, 322, 952, 2541, 6539, 15833, 37148, 83594, 183289, 389520, 809820, 1643375, 3272797, 6390745, 12279337, 23208483, 43252360, 79483096, 144265338, 258673983, 458747540, 804877837, 1398356706, 2406328974, 4104352128, 6940717598, 11643270856
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024208-A024210. First column of A050301.
Column k=7 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 7];
    Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

Extensions

More terms from Alois P. Heinz, Aug 18 2012

A024210 Number of terms in n-th derivative of a function composed with itself 10 times.

Original entry on oeis.org

1, 1, 10, 55, 265, 1045, 3817, 12583, 39148, 114235, 318857, 850576, 2190850, 5451721, 13184711, 31023842, 71286349, 160139911, 352574213, 761567304, 1616713932, 3376143283, 6944345483, 14080091227, 28169087367, 55644767253, 108617341172, 209626751905
Offset: 0

Views

Author

Winston C. Yang (yang(AT)math.wisc.edu)

Keywords

References

  • W. C. Yang (yang(AT)math.wisc.edu), Derivatives of self-compositions of functions, preprint, 1997.

Crossrefs

Cf. A008778, A022811-A022817, A024207-A024209. First column of A050304.
Column k=10 of A022818.

Programs

  • Mathematica
    b[n_, i_, k_] := b[n, i, k] = If[n < k, 0, If[n == 0, 1, If[i < 1, 0, Sum[b[n - i*j, i - 1, k - j], {j, 0, Min[n/i, k]}]]]];
    a[n_, k_] := a[n, k] = If[k == 1, 1, Sum[b[n, n, i]*a[i, k-1], {i, 0, n}]];
    a[n_] := a[n, 10]; Table[a[n], {n, 0, 30}] (* Jean-François Alcover, Apr 28 2017, after Alois P. Heinz *)

Formula

If a(n,m) = number of terms in m-derivative of a function composed with itself n times, p(n,k) = number of partitions of n into k parts, then a(n,m) = sum_{i=0..m} p(m,i)*a(n-1,i).

A005744 Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).

Original entry on oeis.org

0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
Offset: 0

Views

Author

Keywords

Comments

Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.

Programs

  • Mathematica
    CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,9,17},50] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,3,-2,-2,3]^n*[0;1;4;9;17])[1,1] \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022

Extensions

Additional comments from Alford Arnold
Showing 1-10 of 30 results. Next