cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 12 results. Next

A024206 Expansion of x^2*(1+x-x^2)/((1-x^2)*(1-x)^2).

Original entry on oeis.org

0, 1, 3, 5, 8, 11, 15, 19, 24, 29, 35, 41, 48, 55, 63, 71, 80, 89, 99, 109, 120, 131, 143, 155, 168, 181, 195, 209, 224, 239, 255, 271, 288, 305, 323, 341, 360, 379, 399, 419, 440, 461, 483, 505, 528, 551, 575, 599, 624, 649, 675, 701, 728, 755, 783, 811, 840
Offset: 1

Views

Author

Keywords

Comments

a(n+1) is the number of 2 X n binary matrices with no zero rows or columns, up to row and column permutation.
[ (4th elementary symmetric function of S(n))/(3rd elementary symmetric function of S(n)) ], where S(n) = {first n+3 odd positive integers}.
First differences are 1, 2, 2, 3, 3, 4, 4, 5, 5, ... .
Let M_n denotes the n X n matrix m(i,j) = 1 if i =j; m(i,j) = 1 if (i+j) is odd; m(i,j) = 0 if i+j is even, then a(n) = -det M_(n+1) - Benoit Cloitre, Jun 19 2002
a(n) is the number of squares with corners on an n X n grid, distinct up to translation. See also A002415, A108279.
Starting (1, 3, 5, 8, 11, ...), = row sums of triangle A135841. - Gary W. Adamson, Dec 01 2007
Number of solutions to x+y >= n-1 in integers x,y with 1 <= x <= y <= n-1. - Franz Vrabec, Feb 22 2008
Let A be the Hessenberg matrix of order n, defined by: A[1,j]=1, A[i,i]:=-1, A[i,i-1]=-1, and A[i,j]=0 otherwise. Then, for n>=5, a(n-4)=-coeff(charpoly(A,x),x^2). - Milan Janjic, Jan 26 2010
Equals row sums of a triangle with alternate columns of (1,2,3,...) and (1,1,1,...). - Gary W. Adamson, May 21 2010
Conjecture: if a(n) = p#(primorial)-1 for some prime number p, then q=(n+1) is also a prime number where p#=floor(q^2/4). Tested up to n=10^100000 no counterexamples are found. It seems that the subsequence is very scattered. So far the triples (p,q,a(q-1)) are {(2,3,1), (3,5,5), (5,11,29), (7,29,209), (17,1429,510509)}. - David Morales Marciel, Oct 02 2015
Numbers of an Ulam spiral starting at 0 in which the shape of the spiral is exactly a rectangle. E.g., a(4)=5 the Ulam spiral is including at that moment only the elements 0,1,2,3,4,5 and the shape is a rectangle. The area is always a(n)+1. E.g., for a(4) the area of the rectangle is 2(rows) X 3(columns) = 6 = a(4) + 1. - David Morales Marciel, Apr 05 2016
Numbers of different quadratic forms (quadrics) in the real projective space P^n(R). - Serkan Sonel, Aug 26 2020
a(n+1) is the number of one-dimensional subspaces of (F_3)^n, counted up to coordinate permutation. E.g.: For n=4, there are five one-dimensional subspaces in (F_3)^3 up to coordinate permutation: [1 2 2] [0 2 2] [1 0 2] [0 0 2] [1 1 1]. This example suggests a bijection (which has to be adjusted for the all-ones matrix) with the binary matrices of the first comment. - Álvar Ibeas, Sep 21 2021

Examples

			There are five 2 X 3 binary matrices with no zero rows or columns up to row and column permutation:
   [1 0 0]  [1 0 0]  [1 1 0]  [1 1 0]  [1 1 1]
   [0 1 1]  [1 1 1]  [0 1 1]  [1 1 1]  [1 1 1].
		

References

  • O. Giering, Vorlesungen über höhere Geometrie, Vieweg, Braunschweig, 1982. See p. 59.

Crossrefs

Cf. A014616, A135841, A034856, A005744 (partial sums), A008619 (1st differences).
A row or column of the array A196416 (possibly with 1 subtracted from it).
Cf. A008619.
Second column of A232206.

Programs

  • GAP
    a:=[0,1,3,5];; for n in [5..65] do a[n]:=2*a[n-1]-2*a[n-3]+a[n-4]; od; a; # Muniru A Asiru, Oct 23 2018
    
  • Haskell
    a024206 n = (n - 1) * (n + 3) `div` 4
    a024206_list = scanl (+) 0 $ tail a008619_list
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Magma
    [(2*n^2+4*n-7-(-1)^n)/8 : n in [1..100]]; // Wesley Ivan Hurt, Jul 22 2014
    
  • Maple
    A024206:=n->(2*n^2+4*n-7-(-1)^n)/8: seq(A024206(n), n=1..100);
  • Mathematica
    f[x_, y_] := Floor[ Abs[ y/x - x/y]]; Table[ Floor[ f[2, n^2 + 2 n - 2] /2], {n, 57}] (* Robert G. Wilson v, Aug 11 2010 *)
    LinearRecurrence[{2,0,-2,1},{0,1,3,5},60] (* Harvey P. Dale, Jun 14 2013 *)
    Rest[CoefficientList[Series[x^2 (1 + x - x^2)/((1 - x^2) (1 - x)^2), {x, 0, 70}], x]] (* Vincenzo Librandi, Oct 02 2015 *)
  • PARI
    a(n)=(n-1)*(n+3)\4 \\ Charles R Greathouse IV, Jun 26 2013
    
  • PARI
    x='x+O('x^99); concat(0, Vec(x^2*(1+x-x^2)/ ((1-x^2)*(1-x)^2))) \\ Altug Alkan, Apr 05 2016
    
  • Python
    def A024206(n): return (n+1)**2//4 - 1 # Ya-Ping Lu, Jan 01 2024

Formula

G.f.: x^2*(1+x-x^2)/((1-x^2)*(1-x)^2) = x^2*(1+x-x^2) / ( (1+x)*(1-x)^3 ).
a(n+1) = A002623(n) - A002623(n-1) - 1.
a(n) = A002620(n+1) - 1 = A014616(n-2) + 1.
a(n+1) = A002620(n) + n, n >= 0. - Philippe Deléham, Feb 27 2004
a(0)=0, a(n) = floor(a(n-1) + sqrt(a(n-1)) + 1) for n > 0. - Gerald McGarvey, Jul 30 2004
a(n) = floor((n+1)^2/4) - 1. - Franz Vrabec, Feb 22 2008
a(n) = A005744(n-1) - A005744(n-2). - R. J. Mathar, Nov 04 2008
a(n) = a(n-1) + [side length of the least square > a(n-1) ], that is a(n) = a(n-1) + ceiling(sqrt(a(n-1) + 1)). - Ctibor O. Zizka, Oct 06 2009
For a(1)=0, a(2)=1, a(n) = 2*a(n-1) - a(n-2) + 1 if n is odd; a(n) = 2*a(n-1) - a(n-2) if n is even. - Vincenzo Librandi, Dec 23 2010
a(n) = A181971(n, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) = 2*a(n-1) - 2*a(n-3) + a(n-4); a(1)=0, a(2)=1, a(3)=3, a(4)=5. - Harvey P. Dale, Jun 14 2013
a(n) = floor( (n-1)*(n+3)/4 ). - Wesley Ivan Hurt, Jun 23 2013
a(n) = (2*n^2 + 4*n - 7 - (-1)^n)/8. - Wesley Ivan Hurt, Jul 22 2014
a(n) = a(-n-2) = n-1 + floor( (n-1)^2/4 ). - Bruno Berselli, Feb 03 2015
a(n) = (1/4)*(n+3)^2 - (1/8)*(1 + (-1)^n) - 1. - Serkan Sonel, Aug 26 2020
a(n) + a(n+1) = A034856(n). - R. J. Mathar, Mar 13 2021
a(2*n) = n^2 + n - 1, a(2*n+1) = n^2 + 2*n. - Greg Dresden and Zijie He, Jun 28 2022
Sum_{n>=2} 1/a(n) = 7/4 + tan(sqrt(5)*Pi/2)*Pi/sqrt(5). - Amiram Eldar, Dec 10 2022
E.g.f.: (4 + (x^2 + 3*x - 4)*cosh(x) + (x^2 + 3*x - 3)*sinh(x))/4. - Stefano Spezia, Aug 06 2024

Extensions

Corrected and extended by Vladeta Jovovic, Jun 02 2000

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A181971 Triangle read by rows: T(n,0) = 1, T(n,n) = floor((n+3)/2) and T(n,k) = T(n-1,k-1) + T(n-1,k), 0 < k < n.

Original entry on oeis.org

1, 1, 2, 1, 3, 2, 1, 4, 5, 3, 1, 5, 9, 8, 3, 1, 6, 14, 17, 11, 4, 1, 7, 20, 31, 28, 15, 4, 1, 8, 27, 51, 59, 43, 19, 5, 1, 9, 35, 78, 110, 102, 62, 24, 5, 1, 10, 44, 113, 188, 212, 164, 86, 29, 6, 1, 11, 54, 157, 301, 400, 376, 250, 115, 35, 6, 1, 12, 65, 211, 458, 701, 776, 626, 365, 150, 41, 7
Offset: 0

Views

Author

Reinhard Zumkeller, Jul 09 2012

Keywords

Comments

Another variant of Pascal's triangle;
row sums: A081254; central terms: T(2*n,n) = A128082(n+1);
T(n,0) = 1;
T(n,1) = n + 1 for n > 0;
T(n,2) = A000096(n-1) for n > 1;
T(n,3) = A105163(n-2) for n > 2;
T(n,n-2) = A005744(n-1) for n > 1;
T(n,n-1) = A024206(n) for n > 0;
T(n,n) = A008619(n+1).

Examples

			The triangle begins:
.  0:                              1
.  1:                           1     2
.  2:                        1     3     2
.  3:                     1     4     5     3
.  4:                  1     5     9     8     3
.  5:               1     6    14    17    11     4
.  6:            1     7    20    31    28    15     4
.  7:         1     8    27    51    59    43    19     5
.  8:      1     9    35    78   110   102    62    24     5
.  9:   1    10    44   113   188   212   164    86    29     6.
		

Crossrefs

Programs

  • Haskell
    a181971 n k = a181971_tabl !! n !! k
    a181971_row n = a181971_tabl !! n
    a181971_tabl = map snd $ iterate f (1, [1]) where
       f (i, row) = (1 - i, zipWith (+) ([0] ++ row) (row ++ [i]))
    
  • Mathematica
    T[n_ /; n >= 0, k_ /; k >= 0] := T[n, k] = If[n == k, Quotient[n + 3, 2], If[k == 0, 1, If[n > k, T[n - 1, k - 1] + T[n - 1, k]]]];
    Table[T[n, k], {n, 0, 11}, {k, 0, n}] // Flatten (* Jean-François Alcover, Oct 12 2021 *)
  • PARI
    {T(n,k)=if(n==k,(n+3)\2,if(k==0,1,if(n>k,T(n-1,k-1)+T(n-1,k))))}
    for(n=0,12,for(k=0,n,print1(T(n,k),","));print("")) \\ Paul D. Hanna, Jul 18 2012

A003453 Number of nonequivalent dissections of an n-gon into 3 polygons by nonintersecting diagonals up to rotation and reflection.

Original entry on oeis.org

1, 3, 6, 11, 17, 26, 36, 50, 65, 85, 106, 133, 161, 196, 232, 276, 321, 375, 430, 495, 561, 638, 716, 806, 897, 1001, 1106, 1225, 1345, 1480, 1616, 1768, 1921, 2091, 2262, 2451, 2641, 2850, 3060, 3290, 3521, 3773, 4026
Offset: 5

Views

Author

Keywords

Comments

In other words, the number of 2-dissections of an n-gon modulo the dihedral action.
John W. Layman observes that this appears to be the alternating sum transform (PSumSIGN) of A005744.
Row 2 of the convolution array A213847. - Clark Kimberling, Jul 05 2012
Number of nonisomorphic outer planar graphs of order n >= 3 and size n+2. - Christian Barrientos and Sarah Minion, Feb 27 2018

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Column 3 of A295634.

Programs

  • Maple
    T52:= proc(n)
    if n mod 2 = 0 then (n-4)*(n-2)*(n+3)/24;
    else (n-3)*(n^2-13)/24; fi end;
    [seq(T52(n),n=5..80)]; # N. J. A. Sloane, Dec 28 2012
  • Mathematica
    nd[n_]:=If[EvenQ[n],(n-4)(n-2) (n+3)/24,(n-3) (n^2-13)/24]; Array[nd,50,5] (* or *) LinearRecurrence[{2,1,-4,1,2,-1},{1,3,6,11,17,26},50] (* Harvey P. Dale, Jan 28 2013 *)
  • PARI
    \\ See A295419 for DissectionsModDihedral()
    { my(v=DissectionsModDihedral(apply(i->y + O(y^4), [1..40]))); apply(p->polcoeff(p, 3), v[5..#v]) } \\ Andrew Howroyd, Nov 24 2017

Formula

G.f.: (1+x-x^2) / ((1-x)^4*(1+x)^2).
See also the Maple code.
a(5)=1, a(6)=3, a(7)=6, a(8)=11, a(9)=17, a(10)=26, a(n) = 2*a(n-1) + a(n-2) - 4*a(n-3) + a(n-4) + 2*a(n-5) - a (n-6). - Harvey P. Dale, Jan 28 2013
a(n) = (2*n^3-6*n^2-23*n+63+3*(n-5)*(-1)^n)/48, for n>=5. - Luce ETIENNE, Apr 07 2015
a(n) = (1/2) * Sum_{i=1..n-4} floor((i+1)*(n-i-2)/2). - Wesley Ivan Hurt, May 07 2016

Extensions

Entry revised (following Bowman and Regev) by N. J. A. Sloane, Dec 28 2012
Name clarified by Andrew Howroyd, Nov 24 2017

A213778 Rectangular array: (row n) = b**c, where b(h) = h, c(h) = 1+[(n-1+h)/2], n>=1, h>=1, [ ] = floor, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 9, 6, 2, 17, 13, 7, 3, 28, 23, 15, 9, 3, 43, 37, 27, 19, 10, 4, 62, 55, 43, 33, 21, 12, 4, 86, 78, 64, 52, 37, 25, 13, 5, 115, 106, 90, 76, 58, 43, 27, 15, 5, 150, 140, 122, 106, 85, 67, 47, 31, 16, 6, 191, 180, 160, 142, 118, 97, 73, 53, 33, 18, 6, 239
Offset: 1

Views

Author

Clark Kimberling, Jun 21 2012

Keywords

Comments

Principal diagonal: A213779.
Antidiagonal sums: A213780.
Row 1, (1,2,3,4,5,...)**(1,2,2,3,3,4,4,...): A005744.
Row 2, (1,2,3,4,5,...)**(2,2,3,3,4,4,...)
Row 3, (1,2,3,4,5,...)**(3,4,4,5,5,...)
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...4....9....17...28...43....62
2...6....13...23...37...55....78
2...7....15...27...43...64....90
3...9....19...33...52...76....106
3...10...21...37...58...85....118
4...12...25...43...67...97....134
4...13...27...47...73...106...146
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := n; c[n_] := 1 + Floor[n/2];
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213778 *)
    Table[t[n, n], {n, 1, 40}] (* A213779 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213780 *)

Formula

T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - 2*T(n,k-3) + 3*T(n,k-4) - T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(1 + [n/2] + d(n)*x - [(n+1)/2]*x^2), g(x) = (1 + x)*(1 - x)^4, d(n) = (n mod 2) and [] = floor.

A005745 Number of n-covers of an unlabeled 3-set.

Original entry on oeis.org

1, 6, 23, 65, 156, 336, 664, 1229, 2159, 3629, 5877, 9221, 14070, 20951, 30530, 43634, 61283, 84725, 115461, 155294, 206368, 271210, 352784, 454550, 580509, 735280, 924163, 1153207, 1429292, 1760218, 2154776, 2622859, 3175555, 3825247
Offset: 1

Views

Author

Keywords

Comments

Number of n X 3 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055609.

Programs

Formula

a(n) = A002727(n) - A002623(n).
G.f.: -x*(x^8-x^7-x^6-2*x^5+2*x^4+x^3-3*x^2-2*x-1)/((x^3-1)^2*(x^2-1)^2*(x-1)^4).

Extensions

More terms from Vladeta Jovovic, May 26 2000

A005746 Number of n-covers of an unlabeled 4-set.

Original entry on oeis.org

1, 9, 51, 230, 863, 2864, 8609, 23883, 61883, 151214, 350929, 778113, 1656265, 3398229, 6743791, 12983181, 24311044, 44377016, 79124476, 138048542, 236050912, 396137492, 653285736, 1059923072, 1693592112, 2667563553, 4145373780, 6360553548, 9643151582
Offset: 1

Views

Author

Keywords

Comments

Number of n X 4 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055082.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 3 x + 9 x^2 + 26 x^3 + 35 x^4 + 92 x^5 + 127 x^6 + 201 x^7 + 242 x^8 + 253 x^9 + 248 x^10 + 205 x^11 + 123 x^12 + 86 x^13 + 31 x^14 + 24 x^15 + 19 x^16 + 5 x^17 + 3 x^18 -
    2 x^19 - 4 x^20 + 2 x^21 - 4 x^22 + 3 x^23 - x^25 + 2 x^26 - x^27)/((1 - x)^16 (1 + x)^6 (1 + x^2)^3 (1 + x + x^2)^4), {x, 0, 29}], x] (* Michael De Vlieger, Aug 23 2016 *)
  • PARI
    Vec(x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4) + O(x^40)) \\ Colin Barker, Aug 23 2016
    
  • PARI
    Vec(G(4, x) - G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

a(n) = A006148(n) - A002727(n).
G.f.: x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4). - Corrected by Colin Barker, Aug 23 2016

Extensions

More terms and g.f. from Vladeta Jovovic, May 26 2000
a(19) onwards corrected by Sean A. Irvine, Aug 22 2016

A213781 Rectangular array: (row n) = b**c, where b(h) = 1+[h/2], c(h) = n-1+h, n>=1, h>=1, [ ] = floor, and ** = convolution.

Original entry on oeis.org

1, 4, 2, 9, 7, 3, 17, 14, 10, 4, 28, 25, 19, 13, 5, 43, 39, 33, 24, 16, 6, 62, 58, 50, 41, 29, 19, 7, 86, 81, 73, 61, 49, 34, 22, 8, 115, 110, 100, 88, 72, 57, 39, 25, 9, 150, 144, 134, 119, 103, 83, 65, 44, 28, 10, 191, 185, 173, 158, 138, 118, 94, 73, 49, 31
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2012

Keywords

Comments

Principal diagonal: A213782.
Antidiagonal sums: A005712.
row 1, (1,2,2,3,3,4,4,...)**(1,2,3,4,5,6,7,...): A005744.
row 2, (1,2,2,3,3,4,4,...)**(2,3,4,5,6,7,8,...).
row 3, (1,2,2,3,3,4,4,...)**(3,4,5,6,7,8,9,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...4....9....17...28...43....62
2...7....14...25...39...58....81
3...10...19...33...50...73....100
4...13...24...41...61...88....119
5...16...29...49...72...103...138
6...19...34...57...83...118...157
7...22...39...65...94...133...176
		

Crossrefs

Programs

  • Mathematica
    b[n_] := Floor[(n + 2)/2]; c[n_] := n;
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213781 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    s1 = Table[s[n], {n, 1, 50}] (* A005712 *)

Formula

T(n,k) = 3*T(n,k-1) - 2*T(n,k-2) - 2*T(n,k-3) + 3*T(n,k-4) - T(n,k-5).
G.f. for row n: f(x)/g(x), where f(x) = x*(n + x - (2*n - 1)*x^2 + (n -1)*x^3) and g(x) = (1 + x)(1 - x)^4.

A213783 Rectangular array: (row n) = b**c, where b(h) = 1+[h/2], c(h) = [(n+h)/2], n>=1, h>=1, [ ] = floor, and ** = convolution.

Original entry on oeis.org

1, 3, 1, 6, 4, 2, 11, 8, 6, 2, 17, 14, 11, 7, 3, 26, 22, 19, 13, 9, 3, 36, 32, 28, 22, 16, 10, 4, 50, 45, 41, 33, 27, 18, 12, 4, 65, 60, 55, 47, 39, 30, 21, 13, 5, 85, 79, 74, 64, 56, 44, 35, 23, 15, 5, 106, 100, 94, 84, 74, 62, 50, 38, 26, 16, 6, 133, 126, 120, 108
Offset: 1

Views

Author

Clark Kimberling, Jun 22 2012

Keywords

Comments

Principal diagonal: A213759.
Antidiagonal sums: A213760.
Row 1, (1,2,2,3,3,4,4,...)**(1,1,2,2,3,3,4,...): A005744.
Row 2, (1,2,2,3,3,4,4,5,...)**(1,2,2,3,3,4,4,5,...).
Row 3, (1,2,2,3,3,4,4,5,...)**(2,2,3,3,4,4,5,5,...).
For a guide to related arrays, see A213500.

Examples

			Northwest corner (the array is read by falling antidiagonals):
1...3....6....11...17...26...36....50
1...4....8....14...22...32...45....60
2...6....11...19...28...41...55....74
2...7....13...22...33...47...64....84
3...9....16...27...39...56...74....98
3...10...18...30...44...62...83....108
4...12...21...35...50...71...93....122
4...13...23...38...55...77...102...132
		

Crossrefs

Cf. A213500.

Programs

  • Mathematica
    b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2];
    t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
    TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
    Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
    r[n_] := Table[t[n, k], {k, 1, 60}]  (* A213783 *)
    Table[t[n, n], {n, 1, 40}] (* A213759 *)
    s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
    Table[s[n], {n, 1, 50}] (* A213760 *)

Formula

T(n,k) = 2*T(n,k-1) -T(n,k-2) - 4*T(n,k-3) +T(n,k-4) +2*T(n,k-5) -T(n,k-6).
G.f. for row n: f(x)/g(x), where f(x) = [(n+1)/2] + [(n+2)/2]*x + ([(n-1)/2] + [(n+1)/2])*x^2 - (1+[n/2]-(n mod 2))*x^3 + [n/2]*x^4 and g(x) = (1 + x)^2 *(1 - x)^4, where [ ] = floor.

A355754 Irregular triangle read by rows: T(n,k) is the number of unlabeled n-node graphs with intersection number (or edge clique cover number) k; n >= 1, 0 <= k <= floor(n^2/4).

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 3, 4, 2, 1, 1, 4, 9, 10, 7, 2, 1, 1, 5, 17, 36, 46, 30, 14, 4, 2, 1, 1, 6, 28, 97, 219, 281, 226, 116, 45, 18, 5, 1, 1, 1, 7, 43, 226, 872, 2104, 3170, 2927, 1774, 793, 290, 87, 37, 9, 3, 2, 1, 1, 8, 62, 472, 2966, 12882, 36595, 63842, 69294, 48881, 24939, 9808, 3387, 1059, 313, 107, 37, 9, 4, 1, 1
Offset: 1

Views

Author

Pontus von Brömssen, Jul 16 2022

Keywords

Examples

			Triangle begins:
  n\k | 0  1  2   3   4    5    6    7    8   9  10 11 12 13 14 15 16
  ----+--------------------------------------------------------------
   1  | 1
   2  | 1  1
   3  | 1  2  1
   4  | 1  3  4   2   1
   5  | 1  4  9  10   7    2    1
   6  | 1  5 17  36  46   30   14    4    2   1
   7  | 1  6 28  97 219  281  226  116   45  18   5  1  1
   8  | 1  7 43 226 872 2104 3170 2927 1774 793 290 87 37  9  3  2  1
		

Crossrefs

Cf. A000088 (row sums), A005744 (column k=2), A355755.

Formula

T(n,0) = 1.
T(n,1) = n-1.
T(n,2) = floor((n-2)*(2*n^2+7*n-12)/24) = A005744(n-2) = (4*n^3+6*n^2-52*n+45+3*(-1)^n)/48.
Showing 1-10 of 12 results. Next