A213779
Principal diagonal of the convolution array A213778.
Original entry on oeis.org
1, 6, 15, 33, 58, 97, 146, 214, 295, 400, 521, 671, 840, 1043, 1268, 1532, 1821, 2154, 2515, 2925, 3366, 3861, 4390, 4978, 5603, 6292, 7021, 7819, 8660, 9575, 10536, 11576, 12665, 13838, 15063, 16377, 17746, 19209, 20730, 22350, 24031, 25816, 27665, 29623
Offset: 1
-
(See A213778.)
LinearRecurrence[{2,1,-4,1,2,-1},{1,6,15,33,58,97},80] (* Harvey P. Dale, Dec 12 2016 *)
-
Vec(x*(1+4*x+2*x^2+x^3)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
A213780
Antidiagonal sums of the convolution array A213778.
Original entry on oeis.org
1, 6, 17, 40, 78, 140, 230, 360, 535, 770, 1071, 1456, 1932, 2520, 3228, 4080, 5085, 6270, 7645, 9240, 11066, 13156, 15522, 18200, 21203, 24570, 28315, 32480, 37080, 42160, 47736, 53856, 60537, 67830, 75753, 84360, 93670, 103740, 114590
Offset: 1
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A005744
Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).
Original entry on oeis.org
0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
Offset: 0
- R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- T. D. Noe, Table of n, a(n) for n = 0..1000
- Milan Janjić, Hessenberg Matrices and Integer Sequences, J. Int. Seq. 13 (2010) # 10.7.8.
- A. V. Jayanthan, S. A. Seyed Fakhari, I. Swanson, and S. Yassemi, Induced matching, ordered matching and Castelnuovo-Mumford regularity of bipartite graphs, arXiv:2405.06781 [math.AC], 2024. See p. 17.
- Vladeta Jovovic, Binary matrices up to row and column permutations.
- Index entries for sequences related to Boolean functions
- Index entries for linear recurrences with constant coefficients, signature (3,-2,-2,3,-1).
-
CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,9,17},50] (* Harvey P. Dale, Apr 10 2012 *)
-
a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,3,-2,-2,3]^n*[0;1;4;9;17])[1,1] \\ Charles R Greathouse IV, Feb 06 2017
A213781
Rectangular array: (row n) = b**c, where b(h) = 1+[h/2], c(h) = n-1+h, n>=1, h>=1, [ ] = floor, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 9, 7, 3, 17, 14, 10, 4, 28, 25, 19, 13, 5, 43, 39, 33, 24, 16, 6, 62, 58, 50, 41, 29, 19, 7, 86, 81, 73, 61, 49, 34, 22, 8, 115, 110, 100, 88, 72, 57, 39, 25, 9, 150, 144, 134, 119, 103, 83, 65, 44, 28, 10, 191, 185, 173, 158, 138, 118, 94, 73, 49, 31
Offset: 1
Northwest corner (the array is read by falling antidiagonals):
1...4....9....17...28...43....62
2...7....14...25...39...58....81
3...10...19...33...50...73....100
4...13...24...41...61...88....119
5...16...29...49...72...103...138
6...19...34...57...83...118...157
7...22...39...65...94...133...176
-
b[n_] := Floor[(n + 2)/2]; c[n_] := n;
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213781 *)
s[n_] := Sum[t[i, n + 1 - i], {i, 1, n}]
s1 = Table[s[n], {n, 1, 50}] (* A005712 *)
Showing 1-5 of 5 results.
Comments