A213782
Principal diagonal of the convolution array A213781.
Original entry on oeis.org
1, 7, 19, 41, 72, 118, 176, 254, 347, 465, 601, 767, 954, 1176, 1422, 1708, 2021, 2379, 2767, 3205, 3676, 4202, 4764, 5386, 6047, 6773, 7541, 8379, 9262, 10220, 11226, 12312, 13449, 14671, 15947, 17313, 18736, 20254, 21832, 23510, 25251, 27097, 29009, 31031
Offset: 1
-
(See A213781.)
LinearRecurrence[{2,1,-4,1,2,-1},{1,7,19,41,72,118},50] (* Harvey P. Dale, Oct 17 2016 *)
-
Vec(x*(1+5*x+4*x^2-2*x^4)/((1-x)^4*(1+x)^2) + O(x^100)) \\ Colin Barker, Jan 31 2016
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
A005712
Coefficient of x^4 in expansion of (1+x+x^2)^n.
Original entry on oeis.org
1, 6, 19, 45, 90, 161, 266, 414, 615, 880, 1221, 1651, 2184, 2835, 3620, 4556, 5661, 6954, 8455, 10185, 12166, 14421, 16974, 19850, 23075, 26676, 30681, 35119, 40020, 45415, 51336, 57816, 64889, 72590, 80955, 90021, 99826, 110409, 121810, 134070
Offset: 2
- L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 78.
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- Vincenzo Librandi, Table of n, a(n) for n = 2..1000
- Armen G. Bagdasaryan and Ovidiu Bagdasar, On some results concerning generalized arithmetic triangles, Electronic Notes in Discrete Mathematics (2018) Vol. 67, 71-77.
- R. K. Guy, Letter to N. J. A. Sloane, 1987
- Milan Janjic, Two Enumerative Functions
- Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992; arXiv:0911.4975 [math.NT], 2009.
- Simon Plouffe, 1031 Generating Functions, Appendix to Thesis, Montreal, 1992
- Eric Weisstein's World of Mathematics, Trinomial Coefficient
- Index entries for linear recurrences with constant coefficients, signature (5,-10,10,-5,1).
a(n)=
A027907(n, 4), n >= 2 (fifth column of trinomial coefficients).
-
I:=[1, 6, 19, 45, 90]; [n le 5 select I[n] else 5*Self(n-1)-10*Self(n-2)+10*Self(n-3)-5*Self(n-4)+Self(n-5): n in [1..40]]; Vincenzo Librandi, Jun 16 2012
-
seq(binomial(n+2,n-2) + binomial(n+1,n-2) - binomial(n,n-2), n=2..50); # Zerinvary Lajos, May 16 2006
A005712:=(-1-z+z**2)/(z-1)**5; # Conjectured (correctly) by Simon Plouffe in his 1992 dissertation.
A005712 := n -> GegenbauerC(`if`(4A005712(n)), n=2..20); # Peter Luschny, May 10 2016
-
CoefficientList[Series[(1+x-x^2)/(1-x)^5,{x,0,40}],x] (* Vincenzo Librandi, Jun 16 2012 *)
LinearRecurrence[{5,-10,10,-5,1},{1,6,19,45,90},40] (* Harvey P. Dale, Apr 30 2015 *)
-
Vec((x^2)*(1+x-x^2)/(1-x)^5+O(x^99)) \\ Charles R Greathouse IV, Sep 23 2012
Showing 1-3 of 3 results.
Comments