A294811 Let b(n) be the number of permutations {c_1..c_n} of {1..n} for which c_1 - c_2 + ... + (-1)^(n-1)*c_n are triangular numbers (A000217). Then a(n) = b(n)/A010551(n).
1, 1, 1, 1, 2, 4, 6, 11, 16, 30, 48, 97, 157, 322, 524, 1077, 1777, 3684, 6157, 12876, 21684, 45520, 77212, 162533, 277608, 585993, 1006784, 2129433, 3677453, 7788711, 13514487, 28654668, 49933938, 105964856, 185377690, 393631445, 691101516, 1468137470
Offset: 0
Keywords
Examples
Let n=3. For a permutation C={c_1,c_2,c_3}, set s = s(C) = c_1 - c_2 + c_3. We have the permutations: 1,2,3; s=2 1,3,2; s=0 2,1,3; s=4 2,3,1; s=0 3,1,2; s=4 3,2,1; s=2 Here there are 2 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(3) = 2, then a(3) = 1. Let n=4. For a permutation C={c_1,c_2,c_3,c_4}, set s = s(C) = c_1 - c_2 + c_3 - c_4. We have the permutations: 1,2,3,4; s=-2 1,3,2,4; s=-4 2,1,3,4; s=0 2,3,1,4; s=-4 3,1,2,4; s=0 3,2,1,4; s=-2 1,2,4,3; s=0 1,3,4,2; s=0 2,1,4,3; s=2 2,3,4,1; s=2 3,1,4,2; s=4 3,2,4,1; s=4 1,4,2,3; s=-4 1,4,3,2; s=-2 2,4,1,3; s=-4 2,4,3,1; s=0 3,4,1,2; s=-2 3,4,2,1; s=0 4,1,2,3; s=2 4,1,3,2; s=4 4,2,1,3; s=0 4,2,3,1; s=4 4,3,1,2; s=0 4,3,2,1; s=2 Here there are 8 permutations for which {s} are triangular numbers (when s = 0). Further, since A010551(4) = 4, then a(4) = 8/4 = 2.
Links
- Alois P. Heinz, Table of n, a(n) for n = 0..250 (terms n=1..200 from Peter J. C. Moses)
Programs
-
Maple
b:= proc(p, m, s) option remember; (n-> `if`(n=0, `if`(issqr(8*s+1), 1, 0), `if`(p>0, b(p-1, m, s+n), 0)+`if`(m>0, b(p, m-1, s-n), 0)))(p+m) end: a:= n-> (t-> b(n-t, t, 0))(iquo(n, 2)): seq(a(n), n=0..40); # Alois P. Heinz, Sep 17 2020
-
Mathematica
polyQ[order_,n_]:=If[n==0,True,IntegerQ[(#-4+Sqrt[(#-4)^2+8 n (#-2)])/(2 (#-2))]&[order]];(*is a number polygonal?*) Map[Total,Table[ possibleSums=Range[1/2-(-1)^n/2-Floor[n/2]^2,Floor[(n+1)/2]^2]; filteredSums=Select[possibleSums,polyQ[3,#]&>-1&]; positions=Map[Flatten[{#,Position[possibleSums,#,1]-1}]&,filteredSums]; Map[SeriesCoefficient[QBinomial[n,Floor[(n+1)/2],q],{q,0,#[[2]]/2}]&,positions],{n,25}]] (* Peter J. C. Moses, Jan 02 2018 *)
Extensions
a(0)=1 prepended by Alois P. Heinz, Sep 17 2020
Comments