cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Zerinvary Lajos

Zerinvary Lajos's wiki page.

Zerinvary Lajos has authored 261 sequences. Here are the ten most recent ones:

A159038 a(n) = 8 * n!.

Original entry on oeis.org

8, 16, 48, 192, 960, 5760, 40320, 322560, 2903040, 29030400, 319334400, 3832012800, 49816166400, 697426329600, 10461394944000, 167382319104000, 2845499424768000, 51218989645824000, 973160803270656000
Offset: 1

Author

Zerinvary Lajos, Apr 03 2009

Keywords

Programs

Formula

a(n) = 8 * A000142(n) for n > 0.

A167166 a(n) = n^7 mod 16.

Original entry on oeis.org

0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0, 5, 0, 15, 0, 1, 0, 11, 0, 13, 0, 7, 0, 9, 0, 3, 0
Offset: 0

Author

Zerinvary Lajos, Oct 29 2009

Keywords

Comments

Equivalently: n^(4*m+7) mod 16. - G. C. Greubel, Jun 04 2016

Programs

  • Mathematica
    Table[Mod[n^7, 16], {n, 0, 10}] (* G. C. Greubel, Jun 04 2016 *)
    PowerMod[Range[0,100],7,16] (* or *) PadRight[{},100,{0,1,0,11,0,13,0,7,0,9,0,3,0,5,0,15}] (* Harvey P. Dale, Jul 29 2018 *)
  • PARI
    a(n)=n^7%16 \\ Charles R Greathouse IV, Apr 06 2016
  • Sage
    [power_mod(n,7,16)for n in range(0, 93)] #
    

Formula

From R. J. Mathar, Sep 30 2013: (Start)
a(n) = a(n-16).
G.f. -x*(1 +11*x^2 +13*x^4 +7*x^6 +9*x^8 +3*x^10 +5*x^12 +15*x^14) / ( (x-1)*(1+x)*(1+x^2)*(1+x^4)*(1+x^8) ). (End)
a(n) = A130909(A001015(n)). - Michel Marcus, Jun 04 2016

A167420 2^n mod 14.

Original entry on oeis.org

1, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8, 2, 4, 8
Offset: 0

Author

Zerinvary Lajos, Nov 03 2009

Keywords

Programs

  • Mathematica
    PowerMod[2,Range[0,100],14] (* Harvey P. Dale, Jul 25 2011 *)
  • PARI
    a(n)=lift(Mod(2,14)^n) \\ Charles R Greathouse IV, Mar 22 2016
  • Sage
    [power_mod(2,n,14)for n in range(0,100)] #
    

Formula

G.f.: 1 + -2*x*(1+2*x+4*x^2) / ( (x-1)*(1+x+x^2) ). - R. J. Mathar, Jun 18 2019

A167421 2^n mod 22.

Original entry on oeis.org

1, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6, 12, 2, 4, 8, 16, 10, 20, 18, 14, 6
Offset: 0

Author

Zerinvary Lajos, Nov 03 2009

Keywords

Programs

  • Mathematica
    PowerMod[2,Range[0,80],22] (* Harvey P. Dale, Dec 11 2012 *)
  • PARI
    a(n)=lift(Mod(2,22)^n) \\ Charles R Greathouse IV, Mar 22 2016
  • Sage
    [power_mod(2,n,22)for n in range(0,84)] #
    

Formula

a(n)= +a(n-1) -a(n-5) +a(n-6), n>6. .G.f.: (x+2*x^2+4*x^3+8*x^4-5*x^5+11*x^6+1)/ ((1-x) * (1+x) * (x^4-x^3+x^2-x+1)). - R. J. Mathar, Apr 13 2010

A167527 n^5 mod 49.

Original entry on oeis.org

0, 1, 32, 47, 44, 38, 34, 0, 36, 4, 40, 37, 10, 20, 0, 22, 25, 33, 30, 31, 6, 0, 8, 46, 26, 23, 3, 41, 0, 43, 18, 19, 16, 24, 27, 0, 29, 39, 12, 9, 45, 13, 0, 15, 11, 5, 2, 17, 48, 0, 1, 32, 47, 44, 38, 34, 0, 36, 4, 40, 37, 10, 20, 0, 22, 25, 33, 30, 31, 6, 0, 8, 46, 26, 23, 3
Offset: 0

Author

Zerinvary Lajos, Nov 05 2009

Keywords

Programs

A167545 n^6 mod 16.

Original entry on oeis.org

0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0, 1, 0, 9, 0, 9, 0, 1, 0
Offset: 0

Author

Zerinvary Lajos, Nov 06 2009

Keywords

Programs

  • Mathematica
    PowerMod[Range[0,110],6,16] (* or *) With[{nn=15},PadRight[{},8nn,{0,1,0,9,0,9,0,1}]] (* Harvey P. Dale, Nov 10 2011 *)
  • PARI
    a(n)=n^6%16 \\ Charles R Greathouse IV, Apr 06 2016
  • Sage
    [power_mod(n,6,16)for n in range(0, 105)] #
    

A167628 n^11 mod 13.

Original entry on oeis.org

0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9, 10, 8, 11, 2, 5, 3, 4, 6, 12, 0, 1, 7, 9
Offset: 0

Author

Zerinvary Lajos, Nov 07 2009

Keywords

Comments

Equivalently: n^(12*m+11) (mod 13). - G. C. Greubel, Jun 17 2016

Programs

Formula

a(n+13) = a(n). - G. C. Greubel, Jun 17 2016

A172242 Number of 10-D hypercubes in an n-dimensional hypercube.

Original entry on oeis.org

1, 22, 264, 2288, 16016, 96096, 512512, 2489344, 11202048, 47297536, 189190144, 722362368, 2648662016, 9372188672, 32133218304, 107110727680, 348109864960, 1105760747520, 3440144547840, 10501493882880, 31504481648640
Offset: 10

Author

Zerinvary Lajos, Jan 29 2010

Keywords

Comments

With a different offset, number of n-permutations (n>=8) of 3 objects: u, v, z with repetition allowed, containing exactly ten (10) u's.

Programs

  • Mathematica
    Table[Binomial[n + 10, 10]*2^n, {n, 0, 22}]
  • Sage
    [lucas_number2(n, 2, 0)*binomial(n,10)/2^10 for n in range(10, 31)] # Zerinvary Lajos, Feb 05 2010

Formula

a(n) = A038207(n,10).
a(n) = binomial(n,10)*2^(n-10). [Corrected by R. J. Mathar, Feb 21 2010]
G.f.: -x^10/(2*x-1)^11. - Colin Barker, Nov 11 2012
a(n) = Sum_{i=10..n} binomial(i,10)*binomial(n,i). Example: for n=15, a(15) = 1*3003 + 11*1365 + 66*455 + 286*105 + 1001*15 + 3003*1 = 96096. - Bruno Berselli, Mar 23 2018
From Amiram Eldar, Jan 07 2022: (Start)
Sum_{n>=10} 1/a(n) = 1879/126 - 20*log(2).
Sum_{n>=10} (-1)^n/a(n) = 393660*log(3/2) - 20111419/126. (End)

A159083 Products of 7 consecutive integers.

Original entry on oeis.org

0, 0, 0, 0, 0, 0, 0, 5040, 40320, 181440, 604800, 1663200, 3991680, 8648640, 17297280, 32432400, 57657600, 98017920, 160392960, 253955520, 390700800, 586051200, 859541760, 1235591280, 1744364160, 2422728000, 3315312000, 4475671200, 5967561600, 7866331200
Offset: 0

Author

Zerinvary Lajos, Apr 05 2009

Keywords

Crossrefs

Equals A008279(n,7) (for n>=7).

Programs

  • Magma
    I:=[0,0,0,0,0,0,0,5040]; [n le 8 select I[n] else 8*Self(n-1) - 28*Self(n-2) +56*Self(n-3) -70*Self(n-4) +56*Self(n-5) -28*Self(n-6) +8*Self(n-7) -Self(n-8): n in [1..30]]; // G. C. Greubel, Jun 28 2018
  • Maple
    G(x):=x^7*exp(x): f[0]:=G(x): for n from 1 to 36 do f[n]:=diff(f[n-1],x) od: x:=0: seq(f[n],n=0..33);
  • Mathematica
    Table[Times@@(n+Range[0,6]),{n,-6,25}] (* or *) LinearRecurrence[{8,-28,56,-70,56,-28,8,-1},{0,0,0,0,0,0,0,5040},30] (* Harvey P. Dale, Apr 07 2018 *)
  • PARI
    my(x='x+O('x^30)); concat([0,0,0,0,0,0,0], Vec(5040*x^7/(1-x)^8)) \\ G. C. Greubel, Jun 28 2018
    

Formula

E.g.f.: x^7*exp(x).
For n>=8: a(n) = A173333(n,n-7). - Reinhard Zumkeller, Feb 19 2010
G.f.: 5040*x^7/(1-x)^8. - Colin Barker, Mar 27 2012
From Amiram Eldar, Mar 08 2022: (Start)
a(n) = n*(n-1)*(n-2)*(n-3)*(n-4)*(n-5)*(n-6) = n!/(n-7)!.
Sum_{n>=7} 1/a(n) = 1/4320.
Sum_{n>=7} (-1)^(n+1)/a(n) = 4*log(2)/45 - 1327/21600. (End)

A172978 a(n) = binomial(n+10, 10)*4^n.

Original entry on oeis.org

1, 44, 1056, 18304, 256256, 3075072, 32800768, 318636032, 2867724288, 24216338432, 193730707456, 1479398129664, 10848919617536, 76776969601024, 526470648692736, 3509804324618240, 22813728110018560, 144934272698941440, 901813252348968960, 5505807224867389440
Offset: 0

Author

Zerinvary Lajos, Feb 06 2010

Keywords

Programs

  • Magma
    [Binomial(n+10, 10)*4^n: n in [0..30]]; // Vincenzo Librandi, Jun 06 2011
  • Mathematica
    Table[Binomial[n + 10, 10]*4^n, {n, 0, 20}]

Formula

From Amiram Eldar, Mar 27 2022: (Start)
G.f.: 1/(1 - 4*x)^11.
Sum_{n>=0} 1/a(n) = 14269429/63 - 787320*log(4/3).
Sum_{n>=0} (-1)^n/a(n) = 78125000*log(5/4) - 1098284605/63. (End)