cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A055080 Triangle T(n,k) read by rows, giving number of k-member minimal covers of an unlabeled n-set, k=1..n.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 6, 9, 4, 1, 1, 9, 23, 17, 5, 1, 1, 12, 51, 65, 28, 6, 1, 1, 16, 103, 230, 156, 43, 7, 1, 1, 20, 196, 736, 863, 336, 62, 8, 1, 1, 25, 348, 2197, 4571, 2864, 664, 86, 9, 1, 1, 30, 590, 6093, 22952, 25326, 8609, 1229, 115, 10, 1, 1, 36, 960
Offset: 1

Views

Author

Vladeta Jovovic, Jun 13 2000

Keywords

Comments

Also number of unlabeled split graphs on n vertices and with a k-element clique (cf. A048194).

Examples

			Triangle begins:
  1;
  1,  1;
  1,  2,   1;
  1,  4,   3,   1;
  1,  6,   9,   4,   1;
  1,  9,  23,  17,   5,   1;
  1, 12,  51,  65,  28,   6,  1;
  1, 16, 103, 230, 156,  43,  7, 1;
  1, 20, 196, 736, 863, 336, 62, 8, 1;
  ...
There are four minimal covers of an unlabeled 3-set: one 1-cover {{1,2,3}}, two 2-covers {{1,2},{3}}, {{1,2},{1,3}} and one 3-cover {{1},{2},{3}}.
		

Crossrefs

Row sums give A048194.
Cf. A035348 for labeled case.

Programs

  • PARI
    \\ Needs A(n,m) from A028657.
    T(n,k) = A(n-k, k) - if(kAndrew Howroyd, Feb 28 2023

Formula

T(n,k) = A028657(n,k) - A028657(n-1,k). - Andrew Howroyd, Feb 28 2023

A005744 Expansion of x*(1+x-x^2)/((1-x)^4*(1+x)).

Original entry on oeis.org

0, 1, 4, 9, 17, 28, 43, 62, 86, 115, 150, 191, 239, 294, 357, 428, 508, 597, 696, 805, 925, 1056, 1199, 1354, 1522, 1703, 1898, 2107, 2331, 2570, 2825, 3096, 3384, 3689, 4012, 4353, 4713, 5092, 5491, 5910, 6350, 6811, 7294, 7799, 8327, 8878, 9453, 10052
Offset: 0

Views

Author

Keywords

Comments

Number of n-covers of a 2-set.
Boolean switching functions a(n,s) for s = 2.
Without the initial 0, this is row 1 of the convolution array A213778. - Clark Kimberling, Jun 21 2012
a(n) equals the second column of the triangle A355754. - Eric W. Weisstein, Mar 12 2024

References

  • R. J. Clarke, Covering a set by subsets, Discrete Math., 81 (1990), 147-152.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

John W. Layman observes that A003453 appears to be the alternating sum transform (PSumSIGN) of A005744.
Cf. A355754.

Programs

  • Mathematica
    CoefficientList[Series[x (1+x-x^2)/((1-x)^4(1+x)),{x,0,50}],x] (* or *) LinearRecurrence[{3,-2,-2,3,-1},{0,1,4,9,17},50] (* Harvey P. Dale, Apr 10 2012 *)
  • PARI
    a(n)=([0,1,0,0,0; 0,0,1,0,0; 0,0,0,1,0; 0,0,0,0,1; -1,3,-2,-2,3]^n*[0;1;4;9;17])[1,1] \\ Charles R Greathouse IV, Feb 06 2017

Formula

a(n) = A002623(n) - (n+1).
a(n) = n*(n-1)/2 + Sum_{j=1..floor((n+1)/2)} (n-2*j+1)*(n-2*j)/2. - N. J. A. Sloane, Nov 28 2003
From R. J. Mathar, Apr 01 2010: (Start)
a(n) = 5*n/12 - 1/16 + 5*n^2/8 + n^3/12 + (-1)^n/16.
a(n) = 3*a(n-1) - 2*a(n-2) - 2*a(n-3) + 3*a(n-4) - a(n-5). (End)
a(n) = A181971(n+1, n-1) for n > 0. - Reinhard Zumkeller, Jul 09 2012
a(n) + a(n+1) = A008778(n). - R. J. Mathar, Mar 13 2021
E.g.f.: (x*(2*x^2 + 21*x + 27)*cosh(x) + (2*x^3 + 21*x^2 + 27*x - 3)*sinh(x))/24. - Stefano Spezia, Jul 27 2022

Extensions

Additional comments from Alford Arnold

A005746 Number of n-covers of an unlabeled 4-set.

Original entry on oeis.org

1, 9, 51, 230, 863, 2864, 8609, 23883, 61883, 151214, 350929, 778113, 1656265, 3398229, 6743791, 12983181, 24311044, 44377016, 79124476, 138048542, 236050912, 396137492, 653285736, 1059923072, 1693592112, 2667563553, 4145373780, 6360553548, 9643151582
Offset: 1

Views

Author

Keywords

Comments

Number of n X 4 binary matrices with at least one 1 in every column up to row and column permutations. - Andrew Howroyd, Feb 28 2023

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

A diagonal of A055080.
First differences give A055082.

Programs

  • Mathematica
    Rest@ CoefficientList[Series[x (1 + 3 x + 9 x^2 + 26 x^3 + 35 x^4 + 92 x^5 + 127 x^6 + 201 x^7 + 242 x^8 + 253 x^9 + 248 x^10 + 205 x^11 + 123 x^12 + 86 x^13 + 31 x^14 + 24 x^15 + 19 x^16 + 5 x^17 + 3 x^18 -
    2 x^19 - 4 x^20 + 2 x^21 - 4 x^22 + 3 x^23 - x^25 + 2 x^26 - x^27)/((1 - x)^16 (1 + x)^6 (1 + x^2)^3 (1 + x + x^2)^4), {x, 0, 29}], x] (* Michael De Vlieger, Aug 23 2016 *)
  • PARI
    Vec(x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4) + O(x^40)) \\ Colin Barker, Aug 23 2016
    
  • PARI
    Vec(G(4, x) - G(3, x) + O(x^40)) \\ G defined in A028657. - Andrew Howroyd, Feb 28 2023

Formula

a(n) = A006148(n) - A002727(n).
G.f.: x*(1 +3*x +9*x^2 +26*x^3 +35*x^4 +92*x^5 +127*x^6 +201*x^7 +242*x^8 +253*x^9 +248*x^10 +205*x^11 +123*x^12 +86*x^13 +31*x^14 +24*x^15 +19*x^16 +5*x^17 +3*x^18 -2*x^19 -4*x^20 +2*x^21 -4*x^22 +3*x^23 -x^25 +2*x^26 -x^27) / ((1 -x)^16*(1 +x)^6*(1 +x^2)^3*(1 +x +x^2)^4). - Corrected by Colin Barker, Aug 23 2016

Extensions

More terms and g.f. from Vladeta Jovovic, May 26 2000
a(19) onwards corrected by Sean A. Irvine, Aug 22 2016

A055538 Number of asymmetric types of (3,n)-hypergraphs without isolated nodes, under action of symmetric group S_3; asymmetric n-covers of an unlabeled 3-set.

Original entry on oeis.org

4, 20, 65, 170, 383, 779, 1470, 2611, 4418, 7182, 11283, 17213, 25601, 37230, 53074, 74327, 102434, 139133, 186501, 246988, 323479, 419344, 538492, 685438, 865376, 1084236, 1348777, 1666664, 2046551, 2498179, 3032482, 3661673, 4399374
Offset: 3

Views

Author

Vladeta Jovovic, Jul 09 2000

Keywords

Comments

Cover may include both empty sets and multiple occurrences of a subset.

Examples

			There are 4 asymmetric (3,3)-hypergraphs without isolated nodes: {{1,2},{1,2},{1,3}}, {{1},{1,2},{1,2,3}}, {{1},{1,2},{2,3}}, {{1},{2},{1,3}}.
		

Crossrefs

Cf. A005745.

Formula

G.f. : (1/(1-x)^8-3/(1-x)^4/(1-x^2)^2+2/(1-x)^2/(1-x^3)^2-3/(1-x)^4+3/(1-x)^2/(1-x^2)+6/(1-x)^2-6/(1-x))/6.

Extensions

More terms from James Sellers, Jul 11 2000
Showing 1-4 of 4 results.