Greg Dresden has authored 79 sequences. Here are the ten most recent ones:
A386489
Expansion of (1-x)/((1+x+2*x^2)*(1-4*x+x^2)).
Original entry on oeis.org
1, 2, 7, 30, 109, 402, 1511, 5638, 21021, 78474, 292887, 1093006, 4079181, 15223810, 56815879, 212039702, 791343293, 2953333114, 11021988791, 41134623134, 153516503405, 572931388658, 2138209053735, 7979904827430, 29781410249821, 111145736175722
Offset: 0
-
LinearRecurrence[{3, 1, 7, -2}, {1, 2, 7, 30}, 30]
A386222
Number of 3-dimensional tilings of a 2 X 2 X (n+1) box with the two upper right cells removed, using 2 X 2 X 1 plates and 1 X 2 X 1 dominos.
Original entry on oeis.org
1, 5, 34, 201, 1241, 7538, 46045, 280693, 1712338, 10443297, 63697825, 388506066, 2369604597, 14452808029, 88151396594, 537657790873, 3279312211305, 20001361622066, 121993408939853, 744068928339589, 4538266259447698, 27680043927136849, 168827650973959281
Offset: 0
Here is one of the a(1)=5 ways to tile the shape for n=1, in this case with one flat plate on the bottom and one domino on top.
____
/ /|
/ / |____
/ / / /|
/___/ / / |
| | / / /
|___|/___/ /
| | /
|_______| /.
-
LinearRecurrence[{5, 9, -14}, {1, 5, 34}, 30]
A385242
Number of tilings of a 3 X n strip with dominos and U-shaped pentominos.
Original entry on oeis.org
1, 0, 3, 0, 12, 2, 50, 16, 210, 100, 888, 558, 3778, 2926, 16164, 14758, 69520, 72504, 300458, 349586, 1304390, 1662320, 5686114, 7821308, 24879632, 36497742, 109227706, 169207550, 480982532, 780370350, 2123682344, 3583760736, 9398963962, 16400994810, 41684827750
Offset: 0
Here are the a(5)=2 ways to tile the 3 X 5 strip with dominos and U's:
_________ _________
|___| |___| | | _ | |
| | |_| | | |_|_| |_|_|
|_|_____|_| |___|_|___|.
-
Join[{1}, LinearRecurrence[{1, 4, -3, 0, -2}, {0, 3, 0, 12, 2}, 40]]
A385868
Number of ways to tile a hexagonal strip made up of n equilateral triangles, using triangles, diamonds, and trapezoids.
Original entry on oeis.org
1, 1, 2, 4, 7, 13, 39, 66, 110, 200, 604, 1032, 1741, 3149, 9476, 16202, 27337, 49461, 148841, 254466, 429308, 776774, 2337580, 3996430, 6742361, 12199339, 36711974, 62764458, 105889743, 191592331, 576566591, 985724436, 1663012914, 3008983882, 9055057632, 15480937786
Offset: 0
Here is one of the a(13) = 3149 possible tilings for this strip of 13 triangular cells:
____________
/ /\ \ \
/__ /__\ \ __\
\ /\ /\
\____/__\/__\.
- Index entries for linear recurrences with constant coefficients, signature (0,0,0,15,0,0,0,9,0,0,0,32,0,0,0,9,0,0,0,1,0,0,0,-1).
-
a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 4; a[4] = 7; a[5] = 13; a[6] = 39; a[7] = 66;
a[n_] := a[n] = Switch[Mod[n, 4],
0, a[n-1] + a[n-3] + 2 a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
1, a[n-1] + a[n-2] + a[n-4] + a[n-5] + a[n-6],
2, a[n-1] + a[n-2] + 3 a[n-3] + a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
3, a[n-1] + a[n-2] + a[n-3] + a[n-4] + a[n-5] + a[n-6]];
Table[a[n], {n, 0, 40}]
A385933
Number of ways to tile a "central bump" strip of length n with 1 X 1 squares and 1 X 3 rectangles.
Original entry on oeis.org
4, 9, 13, 25, 30, 35, 52, 78, 121, 189, 271, 388, 561, 812, 1204, 1785, 2617, 3837, 5602, 8179, 12000, 17606, 25825, 37881, 55483, 81264, 119089, 174520, 255828, 375017, 549589, 805425, 1180342, 1729779, 2535196, 3715630, 5445561, 7980917, 11696455, 17141772
Offset: 0
For n = 0 there is no horizontal strip but there is still the "central bump". Here are the a(n) = 4 ways to tile this (disjoint) structure with 1 X 1 squares and 1 X 3 rectangles.
_ _ _ _
_|_|_ _|_|_ _|_|_ _|_|_
|_|_|_| |_____| |_|_|_| |_____|
_____ _____ _____ _____
|_|_|_| |_|_|_| |_____| |_____|
|_| |_| |_| |_|
-
LinearRecurrence[{1,0,1,-1,1,1,0,0,-1},{4,9,13,25,30,35,52,78,121},61]
A385717
a(n) = a(n-1) + a(n-2) + a(n-3), with a(1) = 4, a(2) = 13, a(3) = 42.
Original entry on oeis.org
4, 13, 42, 59, 114, 215, 388, 717, 1320, 2425, 4462, 8207, 15094, 27763, 51064, 93921, 172748, 317733, 584402, 1074883, 1977018, 3636303, 6688204, 12301525, 22626032, 41615761, 76543318, 140785111, 258944190, 476272619
Offset: 1
-
LinearRecurrence[{1, 1, 1}, {4, 13, 42}, 30]
A385633
a(n) = a(n-1) + a(n-3), with a(0) = 1, a(1) = 4, a(2) = 8.
Original entry on oeis.org
1, 4, 8, 9, 13, 21, 30, 43, 64, 94, 137, 201, 295, 432, 633, 928, 1360, 1993, 2921, 4281, 6274, 9195, 13476, 19750, 28945, 42421, 62171, 91116, 133537, 195708, 286824, 420361, 616069, 902893, 1323254, 1939323, 2842216, 4165470, 6104793, 8947009, 13112479, 19217272
Offset: 0
Shown here is one of the a(4)=13 ways to tile this shape of length 4:
_
| |_
| | |____
|_| |_|_|
|_|_|
|_|
-
LinearRecurrence[{1, 0, 1}, {1, 4, 8}, 40]
A376031
Number of ways to tile a 3 x (2*n) rectangle with dominoes and T's.
Original entry on oeis.org
1, 3, 18, 112, 692, 4294, 26624, 165086, 1023662, 6347440, 39358774, 244053158, 1513307844, 9383614226, 58185263358, 360791140032, 2237168644134, 13872079956206, 86017029971684, 533368425534858, 3307273890427894, 20507514248408832, 127161570097317790
Offset: 0
For n=3, here is one of the a(3) = 112 ways to tile a 3 x 6 rectangle using our dominoes and T's:
___________
| |___| | | |
| _|_ |_|_|
|_|___|_|___|.
-
LinearRecurrence[{5, 7, 4, -8, 2}, {1, 3, 18, 112, 692}, 30] (* Paolo Xausa, Sep 23 2024 *)
A375823
Number of ways to tile a 3-row trapezoid of average length n with triangular and rectangular tiles, each of size 3.
Original entry on oeis.org
0, 1, 3, 6, 16, 43, 107, 271, 695, 1769, 4499, 11464, 29202, 74360, 189382, 482339, 1228417, 3128538, 7967848, 20292665, 51681683, 131623881, 335222157, 853749843, 2174345679, 5537663440, 14103422412, 35918853816, 91478793556, 232979863477, 593357374127
Offset: 0
-
LinearRecurrence[{2, 0, 4, -1, 0, -1}, {0, 1, 3, 6, 16, 43}, 40]
A375821
Number of ways to tile a 3-row parallelogram of length n with triangular and rectangular tiles, each of size 3.
Original entry on oeis.org
1, 1, 2, 7, 17, 41, 107, 274, 693, 1766, 4504, 11465, 29194, 74364, 189391, 482327, 1228412, 3128559, 7967841, 20292639, 51681711, 131623900, 335222103, 853749852, 2174345752, 5537663377, 14103422348, 35918853952, 91478793557, 232979863277, 593357374262
Offset: 0
-
LinearRecurrence[{2, 0, 4, -1, 0, -1}, {1, 1, 2, 7, 17, 41}, 40]
Comments