cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Greg Dresden

Greg Dresden's wiki page.

Greg Dresden has authored 79 sequences. Here are the ten most recent ones:

A386489 Expansion of (1-x)/((1+x+2*x^2)*(1-4*x+x^2)).

Original entry on oeis.org

1, 2, 7, 30, 109, 402, 1511, 5638, 21021, 78474, 292887, 1093006, 4079181, 15223810, 56815879, 212039702, 791343293, 2953333114, 11021988791, 41134623134, 153516503405, 572931388658, 2138209053735, 7979904827430, 29781410249821, 111145736175722
Offset: 0

Author

Greg Dresden and Madison Lingchen Zhou, Aug 20 2025

Keywords

Comments

a(n) is the number of ways to tile a 2 X n board with squares, dominoes, and L-shaped quadrominoes. Here is one of the a(4)=109 possible tilings of a 2 X 4 board:
| | |||
Compare to A030186 which counts the tilings with just squares and dominos.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{3, 1, 7, -2}, {1, 2, 7, 30}, 30]

Formula

a(n) = 3*a(n-1) + a(n-2) + 7*a(n-3) - 2*a(n-4).
a(n) = A030186(n) + 2*sum_{i=0..n-2}(A033505(n-i-3)*a(i) + A030186(n-i-3)*(a(i)+2*sum_{j=0..i} a(j)).
a(n) ~ (2 + sqrt(3))^(n+2) / (18 + 4*sqrt(3)). - Vaclav Kotesovec, Aug 21 2025
23*a(n) = -4*A001353(n)+13*A001353(n+1) +10*A001607(n+1)+8*A001607(n) . - R. J. Mathar, Aug 26 2025

A386222 Number of 3-dimensional tilings of a 2 X 2 X (n+1) box with the two upper right cells removed, using 2 X 2 X 1 plates and 1 X 2 X 1 dominos.

Original entry on oeis.org

1, 5, 34, 201, 1241, 7538, 46045, 280693, 1712338, 10443297, 63697825, 388506066, 2369604597, 14452808029, 88151396594, 537657790873, 3279312211305, 20001361622066, 121993408939853, 744068928339589, 4538266259447698, 27680043927136849, 168827650973959281
Offset: 0

Author

Greg Dresden and Xiaoya Gao, Aug 13 2025

Keywords

Comments

Here is the box for n=3:
/ / / /|
/_/___/_/ |__
/ / / /| / /|
/_/___/_/ |/_/ |
| | | | / /| /
|_|___|_|/_/ |/
| | | | | /
|_|___|_|___| /.

Examples

			Here is one of the a(1)=5 ways to tile the shape for n=1, in this case with one flat plate on the bottom and one domino on top.
    ____
   /   /|
  /   / |____
 /   /  /   /|
/___/  /   / |
|   | /   /  /
|___|/___/  /
|       |  /
|_______| /.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 9, -14}, {1, 5, 34}, 30]

Formula

G.f.: 1/(1 - 5*x - 9*x^2 + 14*x^3).
a(n) = 5*a(n-1) + 9*a(n-2) - 14*a(n-3) for n >= 3.
a(n) = A359884(n) + 2*a(n-1).

A385242 Number of tilings of a 3 X n strip with dominos and U-shaped pentominos.

Original entry on oeis.org

1, 0, 3, 0, 12, 2, 50, 16, 210, 100, 888, 558, 3778, 2926, 16164, 14758, 69520, 72504, 300458, 349586, 1304390, 1662320, 5686114, 7821308, 24879632, 36497742, 109227706, 169207550, 480982532, 780370350, 2123682344, 3583760736, 9398963962, 16400994810, 41684827750
Offset: 0

Author

Greg Dresden and Siting Jia, Jul 28 2025

Keywords

Comments

Compare to A001835 which counts the tilings of a 3 X 2*(n-1) strip with just dominos. So, there will be 12 tilings of a 3 X 4 strip with dominos and U-shaped pentominos; 11 of them come from the U-free tilings counted in A001835(3), and here is the one additional tiling with two U's:
| | |
| |_| |
|_|___|.

Examples

			Here are the a(5)=2 ways to tile the 3 X 5 strip with dominos and U's:
   _________     _________
  |___| |___|   | |  _  | |
  | | |_| | |   |_|_| |_|_|
  |_|_____|_|   |___|_|___|.
		

Crossrefs

Cf. A001835.

Programs

  • Mathematica
    Join[{1}, LinearRecurrence[{1, 4, -3, 0, -2}, {0, 3, 0, 12, 2}, 40]]

Formula

G.f.: (x-1)*(x+1)*(x^3+x-1)/(2*x^5+3*x^3-4*x^2-x+1).
a(n) = a(n-1) + 4*a(n-2) - 3*a(n-3) - 2*a(n-5) for n >= 6.

A385868 Number of ways to tile a hexagonal strip made up of n equilateral triangles, using triangles, diamonds, and trapezoids.

Original entry on oeis.org

1, 1, 2, 4, 7, 13, 39, 66, 110, 200, 604, 1032, 1741, 3149, 9476, 16202, 27337, 49461, 148841, 254466, 429308, 776774, 2337580, 3996430, 6742361, 12199339, 36711974, 62764458, 105889743, 191592331, 576566591, 985724436, 1663012914, 3008983882, 9055057632, 15480937786
Offset: 0

Author

Greg Dresden and Sean Choi, Jul 10 2025

Keywords

Comments

Here is the hexagonal strip:
/\ /\ /\ /\ / \ /
/\/\/\/\/ ... \/
\ /\ /\ /\ /\ /\
\/\/\/\/\ /\
The three types of tiles are triangles, diamonds, and trapezoids (each of which can be rotated). Here are the three types of tiles:
\ / \ \ / \
\/ and \_\ and /____\.
Compare to A356622 and A356623, which are on a similar board but only use triangles and diamonds.

Examples

			Here is one of the a(13) = 3149 possible tilings for this strip of 13 triangular cells:
   ____________
  /   /\   \   \
 /__ /__\   \ __\
 \      /\  /\
  \____/__\/__\.
		

Crossrefs

Programs

  • Mathematica
    a[0] = 1; a[1] = 1; a[2] = 2; a[3] = 4; a[4] = 7; a[5] = 13; a[6] = 39; a[7] = 66;
    a[n_] := a[n] = Switch[Mod[n, 4],
        0, a[n-1] + a[n-3] + 2 a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
        1, a[n-1] + a[n-2] + a[n-4] + a[n-5] + a[n-6],
        2, a[n-1] + a[n-2] + 3 a[n-3] + a[n-4] + 3 a[n-5] + 2 a[n-6] + a[n-7],
        3, a[n-1] + a[n-2] + a[n-3] + a[n-4] + a[n-5] + a[n-6]];
    Table[a[n], {n, 0, 40}]

Formula

a(n) = 15*a(n-4) + 9*a(n-8) + 32*a(n-12) + 9*a(n-16) + 1*a(n-20) - 1*a(n-24).
a(4*n+2) = t(2*n+1)^2 + t(2*n)^2 + 2*t(2*n)*t(2*n-1) + a(4*n) + 2*a(4*n-1) + Sum_{i=1..n-1} a(4*i)*(t(2*(n-i))^2 + 2*t(2*(n-i))*t(2*(n-i)-1)) + Sum_{i=1..n-1} a(4*i-1)*2*t(2*(n-i))^2, for t(n) = A000073(n+2).
G.f.: (x^18-x^17+x^16-x^14+4*x^12-6*x^11-x^10+4*x^9+4*x^8-6*x^7-9*x^6+2*x^5+8*x^4-4*x^3 -2*x^2-x-1) / (-x^24+x^20+9*x^16+32*x^12+9*x^8+15*x^4-1). - Alois P. Heinz, Jul 21 2025

A385933 Number of ways to tile a "central bump" strip of length n with 1 X 1 squares and 1 X 3 rectangles.

Original entry on oeis.org

4, 9, 13, 25, 30, 35, 52, 78, 121, 189, 271, 388, 561, 812, 1204, 1785, 2617, 3837, 5602, 8179, 12000, 17606, 25825, 37881, 55483, 81264, 119089, 174520, 255828, 375017, 549589, 805425, 1180342, 1729779, 2535196, 3715630, 5445561, 7980917, 11696455, 17141772
Offset: 0

Author

Greg Dresden and Saim Usmani, Jul 12 2025

Keywords

Comments

a(n) is the number of ways to tile this "central bump" strip of length n (shown here at n=18) with 1 X 1 squares and 1 X 3 rectangles which can be horizontal or vertical:
_
||_
_____________|_|||_____________
|||_|||_|||_|||_|||_|||_|
|||_|
|_|

Examples

			For n = 0 there is no horizontal strip but there is still the "central bump". Here are the a(n) = 4 ways to tile this (disjoint) structure with 1 X 1 squares and 1 X 3 rectangles.
   _           _           _           _
 _|_|_       _|_|_       _|_|_       _|_|_
|_|_|_|     |_____|     |_|_|_|     |_____|
 _____       _____       _____       _____
|_|_|_|     |_|_|_|     |_____|     |_____|
  |_|         |_|         |_|         |_|
		

Crossrefs

Cf. A000930.

Programs

  • Mathematica
    LinearRecurrence[{1,0,1,-1,1,1,0,0,-1},{4,9,13,25,30,35,52,78,121},61]

Formula

a(n) = a(n-1) + a(n-3) - a(n-4) + a(n-5) + a(n-6) - a(n-9).
a(2*n) = a(2*n-2) + a(2*n-4) + 2*a(2*n-6) + a(2*n-7) + a(2*n-8).
a(2*n+1) = a(2*n-1) + 2*a(2*n-4) + a(2*n-5) + 2*a(2*n-6).
a(2*n+3) = 25*b(n)^2 + 26*b(n)*b(n-2) + 10*b(n)*b(n-1) + 9*b(n-2)^2 + 8*b(n-1)*b(n-2) for b(n) = A000930(n) the Narayana Cow sequence.
G.f.: (4 + 5*x + 4*x^2 + 8*x^3 - 3*x^5 - 8*x^6 - x^7)/(1 - x - x^3 + x^4 - x^5 - x^6 + x^9).

A385717 a(n) = a(n-1) + a(n-2) + a(n-3), with a(1) = 4, a(2) = 13, a(3) = 42.

Original entry on oeis.org

4, 13, 42, 59, 114, 215, 388, 717, 1320, 2425, 4462, 8207, 15094, 27763, 51064, 93921, 172748, 317733, 584402, 1074883, 1977018, 3636303, 6688204, 12301525, 22626032, 41615761, 76543318, 140785111, 258944190, 476272619
Offset: 1

Author

Greg Dresden and Jiarui Zhou, Jul 07 2025

Keywords

Comments

For n >= 3, a(n) is the number of ways to tile this shape of length n with 1 X 1 squares, 1 X 2 dominos, and 1 X 3 trominos:
_
|||_|||_|||
|||
As an example, here is one of the a(8) = 717 ways to tile this shape of length 8:
_
| ||_________
|||

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 1, 1}, {4, 13, 42}, 30]

Formula

a(n) = 9*A354080(n-2) + 2*A100683(n) for n >= 2.
G.f.: x*(4 + 9*x + 25*x^2)/(1 - x - x^2 - x^3). - Stefano Spezia, Jul 08 2025

A385633 a(n) = a(n-1) + a(n-3), with a(0) = 1, a(1) = 4, a(2) = 8.

Original entry on oeis.org

1, 4, 8, 9, 13, 21, 30, 43, 64, 94, 137, 201, 295, 432, 633, 928, 1360, 1993, 2921, 4281, 6274, 9195, 13476, 19750, 28945, 42421, 62171, 91116, 133537, 195708, 286824, 420361, 616069, 902893, 1323254, 1939323, 2842216, 4165470, 6104793, 8947009, 13112479, 19217272
Offset: 0

Author

Greg Dresden and Saim Usmani, Jul 05 2025

Keywords

Comments

a(n) is the number of ways to tile this shape, of length n, with 1 X 1 squares and 1 X 3 rectangles (which can be either horizontal or vertical).
_
||
|||______________
|||_|||_|||_|
|||
|_|

Examples

			Shown here is one of the a(4)=13 ways to tile this shape of length 4:
   _
  | |_
  | | |____
  |_| |_|_|
  |_|_|
  |_|
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{1, 0, 1}, {1, 4, 8}, 40]

Formula

a(n) = b(n+4) + 2*b(n-5) for b(n) = A000930(n), Narayana's cows sequence.
G.f.: (1 + 3*x + 4*x^2)/(1 - x - x^3). - Stefano Spezia, Jul 06 2025

A376031 Number of ways to tile a 3 x (2*n) rectangle with dominoes and T's.

Original entry on oeis.org

1, 3, 18, 112, 692, 4294, 26624, 165086, 1023662, 6347440, 39358774, 244053158, 1513307844, 9383614226, 58185263358, 360791140032, 2237168644134, 13872079956206, 86017029971684, 533368425534858, 3307273890427894, 20507514248408832, 127161570097317790
Offset: 0

Author

Greg Dresden and Lucas MingQu Xia, Sep 06 2024

Keywords

Comments

a(n) is the number of ways to tile a 3 X (2*n) rectangle with two kinds of tiles: dominoes (made up of 2 cells) and T's (made up of 4 cells), each of which can be rotated as needed.

Examples

			For n=3, here is one of the a(3) = 112 ways to tile a 3 x 6 rectangle using our dominoes and T's:
 ___________
| |___| | | |
|  _|_  |_|_|
|_|___|_|___|.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5, 7, 4, -8, 2}, {1, 3, 18, 112, 692}, 30] (* Paolo Xausa, Sep 23 2024 *)

Formula

a(n) = 5*a(n-1) + 7*a(n-2) + 4*a(n-3) - 8*a(n-4) + 2*a(n-5).
G.f.: -(2*x^4-3*x^3-4*x^2-2*x+1)/(2*x^5-8*x^4+4*x^3+7*x^2+5*x-1).

A375823 Number of ways to tile a 3-row trapezoid of average length n with triangular and rectangular tiles, each of size 3.

Original entry on oeis.org

0, 1, 3, 6, 16, 43, 107, 271, 695, 1769, 4499, 11464, 29202, 74360, 189382, 482339, 1228417, 3128538, 7967848, 20292665, 51681683, 131623881, 335222157, 853749843, 2174345679, 5537663440, 14103422412, 35918853816, 91478793556, 232979863477, 593357374127
Offset: 0

Author

Greg Dresden and Mingjun Oliver Ouyang, Aug 30 2024

Keywords

Comments

Here is the 3-row trapezoid of average length 6 (with 18 cells):
_ ___ _ ___ _
| | | | | |
|__|___|_|___| |_
| | | | | | |
|__|___|_|___| |___|_
| | | | | | | |
|_|___|_|___|_|___|_|,
and here are the two types of (triangular and rectangular) tiles of size 3, which can be rotated as needed:
_
| |
| | | | | | |
|_|___|, |_|___|_|.
As an example, here is one of the a(6) = 107 ways to tile the 3-row trapezoid
| | | |
| | | | | |
| | | | | |
| | | | | |
|_|_______|_|___|_____|.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, 4, -1, 0, -1}, {0, 1, 3, 6, 16, 43}, 40]

Formula

a(n) = 2*a(n-1) + 4*a(n-3) - a(n-4) - a(n-6).
G.f.: x*(1 + x)/((1 + x^2 - x^3)*(1 - 2*x - x^2 - x^3)).
a(n) = (A077939(n) - A077961(n))/2.

A375821 Number of ways to tile a 3-row parallelogram of length n with triangular and rectangular tiles, each of size 3.

Original entry on oeis.org

1, 1, 2, 7, 17, 41, 107, 274, 693, 1766, 4504, 11465, 29194, 74364, 189391, 482327, 1228412, 3128559, 7967841, 20292639, 51681711, 131623900, 335222103, 853749852, 2174345752, 5537663377, 14103422348, 35918853952, 91478793557, 232979863277, 593357374262
Offset: 0

Author

Greg Dresden and Mingjun Oliver Ouyang, Aug 30 2024

Keywords

Comments

Here is the 3-row parallelogram of length 6 (with 18 cells):
_ ___ _ ___ _ ___
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|__|___|_|___| |___|
| | | | | | |
|_|___|_|___|_|___|,
and here are the two types of (triangular and rectangular) tiles of size 3, which can be rotated as needed:
_
| |
| | | | | | |
|_|___|, |_|___|_|.
As an example, here is one of the a(6) = 107 ways to tile the 3 x 6 parallelogram:
_ _______ _________
| | | |
| | | | |
| | |_|___________|
| | | |
|_|_______|_________|.

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{2, 0, 4, -1, 0, -1}, {1, 1, 2, 7, 17, 41}, 40]

Formula

a(n) = 2*a(n-1) + 4*a(n-3) - a(n-4) - a(n-6).
G.f.: (1 - x - x^3)/((1 + x^2 - x^3)*(1 - 2*x - x^2 - x^3)).
a(n) = (A077939(n) + A077961(n))/2.