A213759
Principal diagonal of the convolution array A213783.
Original entry on oeis.org
1, 4, 11, 22, 39, 62, 93, 132, 181, 240, 311, 394, 491, 602, 729, 872, 1033, 1212, 1411, 1630, 1871, 2134, 2421, 2732, 3069, 3432, 3823, 4242, 4691, 5170, 5681, 6224, 6801, 7412, 8059, 8742, 9463, 10222, 11021, 11860, 12741, 13664, 14631
Offset: 1
-
b[n_] := Floor[(n + 2)/2]; c[n_] := Floor[(n + 1)/2];
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213783 *)
Table[t[n, n], {n, 1, 40}] (* A213759 *)
LinearRecurrence[{3,-2,-2,3,-1},{1,4,11,22,39},50] (* Harvey P. Dale, Jul 22 2014 *)
A213760
Antidiagonal sums of the convolution array A213783.
Original entry on oeis.org
1, 4, 12, 27, 52, 92, 148, 230, 335, 480, 656, 889, 1162, 1512, 1912, 2412, 2973, 3660, 4420, 5335, 6336, 7524, 8812, 10322, 11947, 13832, 15848, 18165, 20630, 23440, 26416, 29784, 33337, 37332, 41532, 46227, 51148, 56620, 62340, 68670
Offset: 1
- Clark Kimberling, Table of n, a(n) for n = 1..1000
- Index entries for linear recurrences with constant coefficients, signature (2,2,-6,0,6,-2,-2,1).
-
(See A213783.)
LinearRecurrence[{2,2,-6,0,6,-2,-2,1},{1,4,12,27,52,92,148,230},40] (* Harvey P. Dale, Feb 13 2024 *)
-
Vec(x*(1 + x - x^2)*(1 + x + 2*x^2) / ((1 - x)^5*(1 + x)^3) + O(x^60)) \\ Colin Barker, May 04 2017
A213500
Rectangular array T(n,k): (row n) = b**c, where b(h) = h, c(h) = h + n - 1, n >= 1, h >= 1, and ** = convolution.
Original entry on oeis.org
1, 4, 2, 10, 7, 3, 20, 16, 10, 4, 35, 30, 22, 13, 5, 56, 50, 40, 28, 16, 6, 84, 77, 65, 50, 34, 19, 7, 120, 112, 98, 80, 60, 40, 22, 8, 165, 156, 140, 119, 95, 70, 46, 25, 9, 220, 210, 192, 168, 140, 110, 80, 52, 28, 10, 286, 275, 255, 228, 196, 161, 125, 90
Offset: 1
Northwest corner (the array is read by southwest falling antidiagonals):
1, 4, 10, 20, 35, 56, 84, ...
2, 7, 16, 30, 50, 77, 112, ...
3, 10, 22, 40, 65, 98, 140, ...
4, 13, 28, 50, 80, 119, 168, ...
5, 16, 34, 60, 95, 140, 196, ...
6, 19, 40, 70, 110, 161, 224, ...
T(6,1) = (1)**(6) = 6;
T(6,2) = (1,2)**(6,7) = 1*7+2*6 = 19;
T(6,3) = (1,2,3)**(6,7,8) = 1*8+2*7+3*6 = 40.
-
b[n_] := n; c[n_] := n
t[n_, k_] := Sum[b[k - i] c[n + i], {i, 0, k - 1}]
TableForm[Table[t[n, k], {n, 1, 10}, {k, 1, 10}]]
Flatten[Table[t[n - k + 1, k], {n, 12}, {k, n, 1, -1}]]
r[n_] := Table[t[n, k], {k, 1, 60}] (* A213500 *)
-
t(n,k) = sum(i=0, k - 1, (k - i) * (n + i));
tabl(nn) = {for(n=1, nn, for(k=1, n, print1(t(k,n - k + 1),", ");); print(););};
tabl(12) \\ Indranil Ghosh, Mar 26 2017
-
def t(n, k): return sum((k - i) * (n + i) for i in range(k))
for n in range(1, 13):
print([t(k, n - k + 1) for k in range(1, n + 1)]) # Indranil Ghosh, Mar 26 2017
Showing 1-3 of 3 results.
Comments