cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Luce ETIENNE

Luce ETIENNE's wiki page.

Luce ETIENNE has authored 22 sequences. Here are the ten most recent ones:

A338996 Numbers of squares and rectangles of all sizes in 3*n*(n+1)/2-ominoes in form of three-quarters of Aztec diamonds.

Original entry on oeis.org

0, 5, 27, 85, 205, 420, 770, 1302, 2070, 3135, 4565, 6435, 8827, 11830, 15540, 20060, 25500, 31977, 39615, 48545, 58905, 70840, 84502, 100050, 117650, 137475, 159705, 184527, 212135, 242730, 276520
Offset: 0

Author

Luce ETIENNE, Nov 18 2020

Keywords

Examples

			a(1) = 2*3-1 = 5, a(2) = 2*16-5 = 27, a(3) = 2*50-15 = 85, a(4) = 2*120-35 = 205, a(5) = 2*245-70 = 420, a(6) = 2*448-126 = 770.
		

Programs

  • Mathematica
    CoefficientList[Series[x (2 x + 5)/(1 - x)^5, {x, 0, 30}], x] (* Michael De Vlieger, Dec 12 2020 *)

Formula

G.f.: x*(2*x + 5)/(1 - x)^5.
E.g.f.: exp(x)*x*(120 + 204*x + 76*x^2 + 7*x^3)/24. - Stefano Spezia, Nov 18 2020
a(n) = 5*(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = n*(n + 1)*(n + 2)*(7*n + 13)/24.
a(n) = 2*A004320(n) - A000332(n+3).
a(n) = 2*A000332(n+2) + 5*A000332(n+3).

A330805 Number of squares and rectangles in the interior of the square with vertices (n,0), (0,n), (-n,0) and (0,-n) in a square (x,y)-grid.

Original entry on oeis.org

0, 9, 51, 166, 410, 855, 1589, 2716, 4356, 6645, 9735, 13794, 19006, 25571, 33705, 43640, 55624, 69921, 86811, 106590, 129570, 156079, 186461, 221076, 260300, 304525, 354159, 409626, 471366, 539835, 615505, 698864, 790416, 890681, 1000195, 1119510, 1249194, 1389831
Offset: 0

Author

Luce ETIENNE, Jan 01 2020

Keywords

Comments

Collection: 2*n*(n+1)-ominoes.
Number of squares (all sizes): (8*n^3 + 24*n^2 + 22*n - 3*(-1)^n + 3)/12.
Number of rectangles (all sizes): (8*n^4 + 24*n^3 + 22*n^2 + 3*(-1)^n - 3)/12.

Examples

			a(1) = 4*1+5 = 9; a(2) = 4*5+31 = 51; a(3) = 4*15 + 106 = 166; a(4) = 4*36 + 270 = 410.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{5,-10,10,-5,1},{0,9,51,166,410},40] (* Harvey P. Dale, Jun 27 2020 *)

Formula

G.f.: x*(x + 3)^2/(1 - x)^5.
E.g.f.: (1/6)*exp(x)*x*(54 + 99*x + 40*x^2 + 4*x^3). - Stefano Spezia, Jan 01 2020
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = n*(n + 1)*(4*n^2 + 12*n + 11)/6.
a(n) = 4*A000332(n+3) + A212523(n+1).
a(n) = 9*A000332(n+3) + 6*A000332(n+2) + A000332(n+1). - Mircea Dan Rus, Aug 26 2020
a(n) = 3*A004320(n) + A004320(n-1). - Mircea Dan Rus, Aug 26 2020

A318054 a(n) = n*(n + 1)*(n^2 + n + 22)/24.

Original entry on oeis.org

0, 2, 7, 17, 35, 65, 112, 182, 282, 420, 605, 847, 1157, 1547, 2030, 2620, 3332, 4182, 5187, 6365, 7735, 9317, 11132, 13202, 15550, 18200, 21177, 24507, 28217, 32335, 36890, 41912, 47432, 53482, 60095, 67305, 75147, 83657, 92872, 102830, 113570, 125132, 137557
Offset: 0

Author

Luce ETIENNE, Aug 14 2018

Keywords

Examples

			a(1) = 2; a(2)= 5+2 = 7; a(3) = 10+5+2 = 17; a(4) = 18+10+5+2 = 35; a(5) = 30+18+10+5+2 = 65; a(6) = 47+30+18+10+5+2 = 112.
		

Crossrefs

Partial sums of A177787.

Programs

  • GAP
    List([0..30],n->n*(n+1)*(n^2+n+22)/24); # Muniru A Asiru, Aug 15 2018
    
  • Maple
    seq(coeff(series(x*(2*x^2-3*x+2)/(1-x)^5, x,n+1),x,n),n=0..30); # Muniru A Asiru, Aug 15 2018
  • PARI
    a(n) = n*(n+1)*(n^2+n+22)/24; \\ Michel Marcus, Aug 17 2018

Formula

G.f.: x*(2*x^2-3*x+2)/(1-x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5).
a(n) = (1/6)*Sum_{i=1..n} (n-i)*((n-i)^2+11), for n >= 1.

A296636 Sequences n*(n+1)*(6*n+1)/2 and n*(n+1)*(7*n+1)/2 interleaved.

Original entry on oeis.org

0, 7, 8, 39, 45, 114, 132, 250, 290, 465, 540, 777, 903, 1204, 1400, 1764, 2052, 2475, 2880, 3355, 3905, 4422, 5148, 5694, 6630, 7189, 8372, 8925, 10395, 10920, 12720, 13192, 15368, 15759, 18360, 18639, 21717, 21850, 25460, 25410, 29610, 29337, 34188, 33649, 39215, 38364, 44712
Offset: 0

Author

Luce ETIENNE, Dec 17 2017

Keywords

Comments

Difference between these subsequences is A002411.
This sequence gives numbers of triangles all sizes in every n-th stage [of what? - N. J. A. Sloane, Feb 09 2018].

Programs

  • GAP
    List([0..50], n -> (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128); # Bruno Berselli, Feb 12 2018
    
  • Magma
    [(2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128: n in [0..50]]; // Bruno Berselli, Feb 12 2018
  • Mathematica
    CoefficientList[Series[x (7 + 8 x + 11 x^2 + 13 x^3)/((1 - x)^4*(1 + x)^4), {x, 0, 46}], x] (* Michael De Vlieger, Dec 18 2017 *)
    LinearRecurrence[{0,4,0,-6,0,4,0,-1},{0,7,8,39,45,114,132,250},50] (* Harvey P. Dale, May 01 2018 *)
    Rest[Flatten[Table[With[{c=(n(n+1))/2},{c*(6n+1),c*(7n+1)}],{n,0,30}]]] (* Harvey P. Dale, Oct 11 2020 *)
  • PARI
    concat(0, Vec(x*(7 + 8*x + 11*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)^4) + O(x^80))) \\ Colin Barker, Dec 18 2017
    

Formula

a(n) = a(n-1)+4*a(n-2)-4*a(n-3)-6*a(n-4)+6*a(n-5)+4*a(n-6)-4*a(n-7)-a(n-8)+a(n-9).
a(n) = (2*n+1-(-1)^n)*(2*n+5-(-1)^n)*(13*n+10+(n-6)*(-1)^n)/128.
From Colin Barker, Dec 18 2017: (Start)
G.f.: x*(7 + 8*x + 11*x^2 + 13*x^3) / ((1 - x)^4*(1 + x)^4).
a(n) = 4*a(n-2) - 6*a(n-4) + 4*a(n-6) - a(n-8) for n>7.
(End)

A282513 a(n) = floor((3*n + 2)^2/24 + 1/3).

Original entry on oeis.org

0, 1, 3, 5, 8, 12, 17, 22, 28, 35, 43, 51, 60, 70, 81, 92, 104, 117, 131, 145, 160, 176, 193, 210, 228, 247, 267, 287, 308, 330, 353, 376, 400, 425, 451, 477, 504, 532, 561, 590, 620, 651, 683, 715, 748, 782, 817, 852, 888, 925, 963
Offset: 0

Author

Luce ETIENNE, Feb 17 2017

Keywords

Comments

List of quadruples: 2*n*(3*n+1), (2*n+1)*(3*n+1), 6*n^2+8*n+3, (n+1)*(6*n+5). These terms belong to the sequences A033580, A033570, A126587 and A049452, respectively. See links for all the permutations.
After 0, subsequence of A025767.
It seems that a(n) is the smallest number of cells that need to be painted in a (n+1) X (n+1) grid, such that it has no unpainted hexominoes (see link to Kamenetsky and Pratt). - Rob Pratt, Dmitry Kamenetsky, Aug 30 2020

Examples

			Rectangular array with four columns:
.   0,   1,   3,   5;
.   8,  12,  17,  22;
.  28,  35,  43,  51;
.  60,  70,  81,  92;
. 104, 117, 131, 145, etc.
From _Rob Pratt_, Aug 30 2020: (Start)
For n = 3, painting only 2 cells would leave an unpainted hexomino, but painting the following 3 cells avoids all unpainted hexominoes:
    . . .
    . . X
    X X .
(End)
		

Crossrefs

Cf. A033436: floor((3*n)^2/24 + 1/3).
Cf. A130519.
Minimum number of painted cells in other n-ominoes: A337501, A337502, A337503.

Programs

  • Magma
    [(3*n^2+4*n+4) div 8: n in [0..50]]; // Bruno Berselli, Feb 17 2017
  • Mathematica
    Table[Floor[(3 n + 2)^2/24 + 1/3], {n, 0, 50}] (* or *) CoefficientList[Series[x (1 + x + x^3)/((1 + x) (1 + x^2) (1 - x)^3), {x, 0, 50}], x] (* or *) Table[(6 n^2 + 8 n + 3 + Cos[n Pi] - 4 Cos[n Pi/2])/16, {n, 0, 50}] (* or *) Table[(3 n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n) (1 + 2 I^((n + 1) (n + 2))))/16, {n, 0, 50}] (* Michael De Vlieger, Feb 17 2017 *)
    LinearRecurrence[{2,-1,0,1,-2,1},{0,1,3,5,8,12},60] (* Harvey P. Dale, Aug 10 2024 *)
  • PARI
    a(n)=(3*n^2 + 4*n + 4)\8 \\ Charles R Greathouse IV, Feb 17 2017
    

Formula

G.f.: x*(1 + x + x^3)/((1 + x)*(1 + x^2)*(1 - x)^3).
a(n) = 2*a(n-1) - a(n-2) + a(n-4) - 2*a(n-5) + a(n-6) for n>5.
a(n) = floor((3*n + 2)^2/24 + 2/3).
a(n) = (6*n^2 + 8*n + 3 + (-1)^n - 2*((-1)^((2*n - 1 + (-1)^n)/4) + (-1)^((2*n + 1 - (-1)^n)/4)))/16. Therefore:
a(2*k) = (6*k^2 + 4*k + 1 - (-1)^k)/4,
a(2*k+1) = (k + 1)*(3*k + 2)/2.
a(n) = (6*n^2 + 8*n + 3 + cos(n*Pi) - 4*cos(n*Pi/2))/16.
a(n) = (3*n + 2)^2/24 + 1/3 + (-6 + (1 + (-1)^n)*(1 + 2*i^((n+1)*(n+2))))/16, where i=sqrt(-1).
a(n) = A130519(n+3)+A130519(n+2)+A130519(n). - R. J. Mathar, Jun 23 2021

Extensions

Corrected and extended by Bruno Berselli, Feb 17 2017

A280304 a(n) = 3*n*(n^2 + 3*n + 4).

Original entry on oeis.org

0, 24, 84, 198, 384, 660, 1044, 1554, 2208, 3024, 4020, 5214, 6624, 8268, 10164, 12330, 14784, 17544, 20628, 24054, 27840, 32004, 36564, 41538, 46944, 52800, 59124, 65934, 73248, 81084, 89460, 98394, 107904, 118008, 128724, 140070, 152064, 164724, 178068, 192114, 206880, 222384, 238644, 255678, 273504, 292140, 311604, 331914, 353088, 375144, 398100
Offset: 0

Author

Luce ETIENNE, Dec 31 2016

Keywords

Comments

Numbers of unit triangles in a certain structure obtained from A006003.

Examples

			a(0) = 6*(1-1) = 0, a(1) = 6*(5-1) = 24, a(2) = 6*(15-1) = 84, a(3) = 6*(34-1) = 198, a(4) = 6*(65-1) = 384.
		

Programs

  • Magma
    [3*n*(n^2 + 3*n + 4) : n in [0..60]]; // Wesley Ivan Hurt, Dec 31 2016
  • Maple
    A280304:=n->3*n*(n^2 + 3*n + 4): seq(A280304(n), n=0..60); # Wesley Ivan Hurt, Dec 31 2016
  • Mathematica
    Table[3 n (n^2 + 3 n + 4), {n, 0, 50}] (* or *)
    CoefficientList[Series[6 x (x^2 - 2 x + 4)/(1 - x)^4, {x, 0, 50}], x] (* Michael De Vlieger, Dec 31 2016 *)
    LinearRecurrence[{4,-6,4,-1},{0,24,84,198},60] (* Harvey P. Dale, Feb 08 2023 *)
  • PARI
    concat(0, Vec(6*x*(x^2-2*x+4) / (1-x)^4 + O(x^30))) \\ Colin Barker, Dec 31 2016
    

Formula

G.f.: 6*x*(x^2-2*x+4) / (1-x)^4.
a(n) = 6*(A006003(n+1)-1).
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4) for n > 3. - Colin Barker, Dec 31 2016

A274772 Zero together with the partial sums of A056640.

Original entry on oeis.org

0, 1, 6, 24, 66, 149, 292, 520, 860, 1345, 2010, 2896, 4046, 5509, 7336, 9584, 12312, 15585, 19470, 24040, 29370, 35541, 42636, 50744, 59956, 70369, 82082, 95200, 109830, 126085, 144080, 163936, 185776, 209729, 235926, 264504, 295602, 329365, 365940, 405480, 448140, 494081, 543466, 596464, 653246, 713989, 778872, 848080, 921800, 1000225, 1083550
Offset: 0

Author

Luce ETIENNE, Nov 11 2016

Keywords

Comments

I

Examples

			a(0) = 0, a(1) = 1, a(2) = 6, a(3) = 24, a(4) = 66.
		

Crossrefs

Programs

  • Mathematica
    LinearRecurrence[{4,-5,0,5,-4,1},{0,1,6,24,66,149},60] (* Harvey P. Dale, Jun 19 2021 *)
  • PARI
    concat(0, Vec(x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)) + O(x^50))) \\ Colin Barker, Nov 11 2016

Formula

a(n) = (4*n^4+8*n^3+2*n^2+4*n+3*(1-(-1)^n))/24. Therefore :
a(2*k) = k*(k+1)*(8*k^2+1)/3, a(2*k+1) = (k+1)*(8*k^3+16*k^2+9*k+3)/3.
From Colin Barker, Nov 11 2016: (Start)
G.f.: x*(1 + 2*x + 5*x^2) / ((1 - x)^5 * (1 + x)).
a(n) = 4*a(n-1) - 5*a(n-2) + 5*a(n-4) - 4*a(n-5) + a(n-6) for n>5.
(End)

A274221 List of quadruples: 3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2.

Original entry on oeis.org

0, 0, 1, 4, 6, 12, 16, 25, 30, 42, 49, 64, 72, 90, 100, 121, 132, 156, 169, 196, 210, 240, 256, 289, 306, 342, 361, 400, 420, 462, 484, 529, 552, 600, 625, 676, 702, 756, 784, 841, 870, 930, 961, 1024, 1056, 1122, 1156, 1225, 1260, 1332, 1369, 1444, 1482
Offset: 0

Author

Luce ETIENNE, Sep 14 2016

Keywords

Comments

For the formulae of the permutations of A152743, A045945, A016778 and A016790, see the link.

Programs

  • Magma
    &cat [[3*n*(3*n-1), 3*n*(3*n+1), (3*n+1)^2, (3*n+2)^2]: n in [0..15]]; // Bruno Berselli, Sep 15 2016
  • Mathematica
    Flatten[Table[{3 n (3 n - 1), 3 n (3 n + 1), (3 n + 1)^2, (3 n + 2)^2}, {n, 0, 15}]] (* Bruno Berselli, Sep 15 2016 *)

Formula

G.f.: x^2*(1+3*x+x^2+3*x^3+x^4)/((1-x)^3*(1+x)^2*(1+x^2)). - Robert Israel, Sep 15 2016
a(n) = (18*n^2-18*n+1-3*(2*n-1)*(-1)^n-4*(-1)^((2*n-1+(-1)^n)/4))/32. Therefore: a(2k) = (18*k^2-12*k+1-(-1)^k)/8, a(2k+1) = (18*k^2+12*k+1-(-1)^k)/8.
a(n) = A064412(n) - A269064(n) for n>0.
E.g.f.: ((9*x^2 - 3*x - 1)*sinh(x) + (9*x^2 + 3*x + 2)*cosh(x) - 2*(sin(x) + cos(x)))/16. - Stefano Spezia, Nov 07 2022

A276071 n^3 followed by n^2 followed by n^4 followed by n.

Original entry on oeis.org

0, 0, 0, 0, 1, 1, 1, 1, 8, 4, 16, 2, 27, 9, 81, 3, 64, 16, 256, 4, 125, 25, 625, 5, 216, 36, 1296, 6, 343, 49, 2401, 7, 512, 64, 4096, 8, 729, 81, 6561, 9, 1000, 100, 10000, 10, 1331, 121, 14641, 11, 1728, 144, 20736, 12, 2197, 169, 28561, 13, 2744, 196, 38416, 14, 3375, 225, 50625, 15
Offset: 0

Author

Luce ETIENNE, Aug 18 2016

Keywords

Examples

			Rectangular array with four columns begins:
.   0,  0,    0, 0;
.   1,  1,    1, 1;
.   8,  4,   16, 2;
.  27,  9,   81, 3;
.  64, 16,  256, 4;
. 125, 25,  625, 5;
. 216, 36, 1296, 6; ...
		

Crossrefs

Cf. A110009.

Programs

  • Magma
    &cat[[n^3,n^2,n^4,n]: n in [0..20]]; // Bruno Berselli, Aug 21 2016
  • Mathematica
    Flatten[Table[{n^3, n^2, n^4, n}, {n, 0, 20}]] (* Bruno Berselli, Aug 21 2016 *)
  • PARI
    concat(vector(4), Vec(x^4*(1+x+x^2+x^3+3*x^4-x^5+11*x^6-3*x^7-3*x^8-x^9+11*x^10+3*x^11-x^12+x^13+x^14-x^15) / ((1-x)^5*(1+x)^5*(1+x^2)^5) + O(x^60))) \\ Colin Barker, Aug 18 2016
    

Formula

a(n) = (2*n - 3 + (-1)^n + 2*(-1)^((2*n - 1 + (-1)^n)/4))*(n^3 - 2*n^2 + 28*n + 40 + (n^3 - 2*n^2 - 4*n - 56)*(-1)^n - (n^3 - 10*n^2 - 4*n + 72)*(-1)^((2*n - 1 + (-1)^n)/4) - (n^3 - 10*n^2 + 28*n - 88)*(-1)^((2*n + 1 - (-1)^n)/4))/2048.
G.f.: x^4*(1 + x + x^2 + x^3 + 3*x^4 - x^5 + 11*x^6 - 3*x^7 - 3*x^8 - x^9 + 11*x^10 + 3*x^11 - x^12 + x^13 + x^14 - x^15)/((1 - x)^5*(1 + x)^5*(1 + x^2)^5). - Colin Barker, Aug 18 2016

A275112 Zero together with the partial sums of A064412.

Original entry on oeis.org

0, 1, 6, 20, 52, 112, 215, 375, 613, 948, 1407, 2013, 2799, 3793, 5034, 6554, 8398, 10603, 13220, 16290, 19870, 24006, 28761, 34185, 40347, 47302, 55125, 63875, 73633, 84463, 96452, 109668, 124204, 140133, 157554, 176544, 197208, 219628, 243915, 270155, 298465, 328936, 361691, 396825, 434467, 474717, 517710, 563550, 612378, 664303, 719472
Offset: 0

Author

Luce ETIENNE, Jul 17 2016

Keywords

Crossrefs

Programs

  • Mathematica
    {0}~Join~Accumulate@ CoefficientList[Series[(1 + x + x^2) (1 + 2 x + x^2 + 3 x^3)/((1 - x)^2 (1 - x^2) (1 - x^4)), {x, 0, 49}], x] (* Michael De Vlieger, Jul 18 2016, after Wesley Ivan Hurt at A064412, or *)
    Table[(14 n^4 + 36 n^3 + 36 n^2 + 42 n + 11 + 3 (2 n - 1) (-1)^n - 8 (-1)^(((2 n - 1 + (-1)^n))/4))/128, {n, 50}] (* Michael De Vlieger, Jul 18 2016 *)
    LinearRecurrence[{3,-2,-2,4,-4,2,2,-3,1},{0,1,6,20,52,112,215,375,613},60] (* Harvey P. Dale, Jun 19 2022 *)
  • PARI
    concat(0, Vec(x*(1+x+x^2)*(1+2*x+x^2+3*x^3)/((1-x)^5*(1+x)^2*(1+x^2)) + O(x^50))) \\ Colin Barker, Jul 18 2016

Formula

a(n) = (28*n^4+36*n^3+18*n^2+12*n+(1-(-1)^n))/16 for n even.
a(n) = (28*n^4+92*n^3+114*n^2+68*n+17-(-1)^n)/16 for n odd.
a(n) = (14*n^4+36*n^3+36*n^2+42*n+11+3*(2*n-1)*(-1)^n-8*(-1)^(((2*n-1+(-1)^n))/4))/128.
G.f.: x*(1+x+x^2)*(1+2*x+x^2+3*x^3) / ((1-x)^5*(1+x)^2*(1+x^2)). - Colin Barker, Jul 18 2016