1, 2, 2, 3, 2, 3, 4, 4, 4, 4, 5, 4, 4, 4, 5, 6, 5, 5, 5, 5, 6, 7, 6, 6, 6, 6, 6, 7, 8, 7, 8, 7, 7, 8, 7, 8, 9, 8, 8, 8, 8, 8, 8, 8, 9, 10, 9, 10, 9, 9, 9, 9, 10, 9, 10
Offset: 1
The array begins:
1, 2, 3, 4, 5, 6, 7, 8, 9, 10, ...
2, 2, 4, 4, 5, 6, 7, 8, 9, 10, ...
3, 4, 4, 5, 6, 8, 8, 10, 10, 12, ...
4, 4, 5, 6, 7, 8, 9, 10, 11, 12, ...
5, 5, 6, 7, 8, 9, 10, 12, 12, 14, ...
6, 6, 8, 8, 9, 10, 11, 12, 12, 14, ...
7, 7, 8, 9, 10, 11, 12, 13, 14, 16, ...
8, 8, 10, 10, 12, 12, 13, 14, 16, 16, ...
9, 9, 10, 11, 12, 12, 14, 16, 16, 18, ...
10, 10, 12, 12, 14, 14, 16, 16, 18, 18, ...
...
As a triangle:
1,
2, 2,
3, 2, 3,
4, 4, 4, 4,
5, 4, 4, 4, 5,
6, 5, 5, 5, 5, 6,
7, 6, 6, 6, 6, 6, 7,
8, 7, 8, 7, 7, 8, 7, 8,
9, 8, 8, 8, 8, 8, 8, 8, 9,
10, 9, 10, 9, 9, 9, 9, 10, 9, 10,
...
Illustration for T(2,3) = 4:
XOX
XOX
Illustration for T(2,5) = 5:
XXXXX
OOOOO
Illustration for T(3,5) = 6 (this left edge + top edge construction - or a slight modification of it - works in many cases):
OXXXX
XOOOO
XOOOO
Illustration for T(3,6) = 8:
XXOOXX
OOOOOO
XXOOXX
Illustration for T(3,8) = 10:
OXXXXXXO
XOOOOOOX
XOOOOOOX
Illustration for T(6,9) = 12:
OXOOOOOOX
OOXXXXXXO
OOOOOOOOO
OXOOOOOOX
OXOOOOOOX
OOOOOOOOO
From _Bob Selcoe_, Apr 24 2016 (Start)
Two symmetric illustrations for T(6,9) = 12:
Grid 1:
X X O O O O O X X
O O O O O O O O O
O O O O O O O O O
O X X X O X X X O
X O O O O O O O X
O O O O O O O O O
Grid 2:
X O O O O O O O X
X O O O O O O O X
O O O O O O O O O
O X X X O X X X O
X O O O O O O O X
O O O O O O O O O
(Note that a symmetric solution is obtained for T(5,9) = 12 by removing row 6)
(End)
Comments