A096753 Antidiagonal sums of table A096751.
1, 2, 3, 5, 9, 18, 38, 85, 198, 478, 1192, 3063, 8093, 21956, 61087
Offset: 0
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
Array begins: k=1: k=2: k=3: k=4: k=5: k=6: n=1: 1 1 1 1 1 1 n=2: 2 4 6 8 10 12 n=3: 3 10 21 36 55 78 n=4: 5 33 104 238 455 775 n=5: 7 91 452 1430 3505 7297 n=6: 11 298 2335 10179 31881 80897 Non-isomorphic representatives of the A(3,3) = 21 multiset partitions: {{111}} {{112}} {{123}} {{1}{11}} {{1}{12}} {{1}{23}} {{1}}{{11}} {{2}{11}} {{1}}{{23}} {{1}{1}{1}} {{1}}{{12}} {{1}{2}{3}} {{1}}{{1}{1}} {{1}{1}{2}} {{1}}{{2}{3}} {{1}}{{1}}{{1}} {{2}}{{11}} {{1}}{{2}}{{3}} {{1}}{{1}{2}} {{2}}{{1}{1}} {{1}}{{1}}{{2}}
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]]; expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]]; expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]]]]; strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n]; kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]]; Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]
Triangle T begins: {1}, {0,1}, {0,1,1}, {0,1,1,1}, {0,1,2,1,1}, {0,1,1,3,1,1}, {0,1,3,1,4,1,1}, {0,1,-1,7,1,5,1,1}, {0,1,15,-17,14,1,6,1,1}, {0,1,-78,133,-61,25,1,7,1,1}, {0,1,632,-1020,529,-152,41,1,8,1,1}, {0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1}, {0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1}, {0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1}, ... with row sums: {1,1,2,3,5,7,11,15,22,...} (A000041). T^2 begins: {1}, {0,1}, {0,2,1}, {0,3,2,1}, {0,5,5,2,1}, {0,7,7,7,2,1}, {0,11,16,9,9,2,1}, {0,15,15,31,11,11,2,1}, {0,22,59,-4,54,13,13,2,1}, ... with row sums: {1,1,3,6,13,24,48,86,...} (A000219).
From _Gus Wiseman_, Jan 23 2019: (Start) The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions: (((1))) (((2))) (((3))) (((11))) (((21))) (((1)(1))) (((111))) (((1))((1))) (((2)(1))) (((1)))(((1))) (((11)(1))) (((2))((1))) (((1)(1)(1))) (((11))((1))) (((2)))(((1))) (((1)(1))((1))) (((11)))(((1))) (((1))((1))((1))) (((1)(1)))(((1))) (((1))((1)))(((1))) (((1)))(((1)))(((1))) (End)
trans[x_]:=If[x=={},{},Transpose[x]]; levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]]; Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)
Table starts: 1, 1, 1, 1, 1 1, 1, 1, 1, 1 1, 2, 2, 2, 2 1, 3, 4, 4, 4 1, 4, 6, 7, 7 1, 6, 11, 13, 14
Array begins: k=0: k=1: k=2: k=3: k=4: k=5: n=0: 1 1 1 1 1 1 n=1: 1 1 1 1 1 1 n=2: 1 2 3 4 5 6 n=3: 1 3 6 10 15 21 n=4: 1 5 15 34 65 111 n=5: 1 7 28 80 185 371 n=6: 1 11 66 254 739 1785 n=7: 1 15 122 604 2163 6223 n=8: 1 22 266 1785 8120 28413 n=9: 1 30 503 4370 24446 101534 The A(4,2) = 15 twice-partitions: (4) (31) (22) (211) (1111) (3)(1) (2)(2) (11)(2) (11)(11) (2)(11) (111)(1) (21)(1) (11)(1)(1) (2)(1)(1) (1)(1)(1)(1)
b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1, 1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k)) end: A:= (n, k)-> b(n$2, k): seq(seq(A(d-k, k), k=0..d), d=0..14); # Alois P. Heinz, Jan 25 2019
ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]]; Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}] (* Second program: *) b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1, b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]]; A[n_, k_] := b[n, n, k]; Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)
trans[x_] := If[x == {}, {}, Transpose[x]]; levptns[n_, k_] := If[k == 1, IntegerPartitions[n], Join @@ Table[ Select[Tuples[levptns[#, k - 1] & /@ y], And @@ (GreaterEqual @@@ trans[Flatten /@ (PadRight[#, ConstantArray[n, k - 1]] & /@ #)]) &], {y, IntegerPartitions[n]}]]; Table[levptns[n, 5] // Length, {n, 1, 7}] (* Robert P. P. McKone, Dec 18 2020 *)
The number of m-dimensional partitions of 5, for m>=0, is given by the binomial transform of the 5th row: BINOMIAL([1,6,11,7,1]) = [1,7,24,59,120,216,357,554,819,1165,...] = A008779. Rows begin: [1], [1, 1], [1, 2, 1], [1, 4, 4, 1], [1, 6, 11, 7, 1], [1, 10, 27, 28, 11, 1], [1, 14, 57, 93, 64, 16, 1], [1, 21, 117, 269, 282, 131, 22, 1], [1, 29, 223, 707, 1062, 766, 244, 29, 1], [1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1], [1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1], [1, 76,1326, 9219, 31828, 58975, 59433, 31802, 8483, 1054, 56, 1], [1,100,2284,20095, 87490,207735, 276230, 204072, 80664, 16162, 1561, 67, 1], [1,134,3898,42707,230737,687665,1173533,1148939,632478,188077,29031,2234,79,1], ... The inverse binomial transform of the diagonals of this triangle begin: [1], [1, 1, 1], [1, 3, 4, 6, 3], [1, 5, 16, 29, 49, 45, 15], [1, 9, 38, 127, 289, 540, 660, 420, 105], [1,13, 90, 397,1384, 3633, 7506, 10920,9765,4725,945], [1,20,182,1140,5266,19324,55645,125447, ? , ? , ? ,62370,10395], ...
The main diagonal of A096751: {1,1,3,10,45,216,...} (A096752), is transformed into the secondary diagonal: {1,1,4,15,71,357,...}, as demonstrated by the dot product of row #5 with A096752: [0,26,10,4,1,1]*[1,1,3,10,45,216] = 357. Rows begin: [1], [0,1], [0,1,1], [0,2,1,1], [0,7,3,1,1], [0,26,10,4,1,1], [0,124,44,13,5,1,1], [0,640,218,68,16,6,1,1], [0,3695,1208,332,99,19,7,1,1], [0,23231,7403,2100,457,138,22,8,1,1], [0,156572,48663,12566,3518,579,186,25,9,1,1], [0,1133838,346636,94878,18043,5787,679,244,28,10,1,1], [0,8635777,2590866,623351,188962,20539,9391,733,313,31,11,1,1], [0,70212042,20875236,5828851,762072,398052,13238,15009,712,394,34,12,1,1],...
Comments