cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 18 results. Next

A096753 Antidiagonal sums of table A096751.

Original entry on oeis.org

1, 2, 3, 5, 9, 18, 38, 85, 198, 478, 1192, 3063, 8093, 21956, 61087
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Crossrefs

A306186 Array read by antidiagonals upwards where A(n, k) is the number of non-isomorphic multiset partitions of weight n with k levels of brackets.

Original entry on oeis.org

1, 2, 1, 3, 4, 1, 5, 10, 6, 1, 7, 33, 21, 8, 1, 11, 91, 104, 36, 10, 1, 15, 298, 452, 238, 55, 12, 1, 22, 910, 2335, 1430, 455, 78, 14, 1, 30, 3017, 11992, 10179, 3505, 775, 105, 16, 1, 42, 9945, 66810, 74299, 31881, 7297, 1218, 136, 18, 1, 56
Offset: 1

Views

Author

Gus Wiseman, Jan 27 2019

Keywords

Examples

			Array begins:
      k=1:  k=2:  k=3:  k=4:  k=5:  k=6:
  n=1:  1     1     1     1     1     1
  n=2:  2     4     6     8    10    12
  n=3:  3    10    21    36    55    78
  n=4:  5    33   104   238   455   775
  n=5:  7    91   452  1430  3505  7297
  n=6: 11   298  2335 10179 31881 80897
Non-isomorphic representatives of the A(3,3) = 21 multiset partitions:
  {{111}}          {{112}}          {{123}}
  {{1}{11}}        {{1}{12}}        {{1}{23}}
  {{1}}{{11}}      {{2}{11}}        {{1}}{{23}}
  {{1}{1}{1}}      {{1}}{{12}}      {{1}{2}{3}}
  {{1}}{{1}{1}}    {{1}{1}{2}}      {{1}}{{2}{3}}
  {{1}}{{1}}{{1}}  {{2}}{{11}}      {{1}}{{2}}{{3}}
                   {{1}}{{1}{2}}
                   {{2}}{{1}{1}}
                   {{1}}{{1}}{{2}}
		

Crossrefs

Columns: A000041 (k=1), A007716 (k=2), A318566 (k=3).
Rows: A000012 (n=1), A005843 (n=2), A014105 (n=3).

Programs

  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    undats[m_]:=Union[DeleteCases[Cases[m,_?AtomQ,{0,Infinity},Heads->True],List]];
    expnorm[m_]:=If[Length[undats[m]]==0,m,If[undats[m]!=Range[Max@@undats[m]],expnorm[m/.Apply[Rule,Table[{undats[m][[i]],i},{i,Length[undats[m]]}],{1}]],First[Sort[expnorm[m,1]]]]];
    expnorm[m_,aft_]:=If[Length[undats[m]]<=aft,{m},With[{mx=Table[Count[m,i,{0,Infinity},Heads->True],{i,Select[undats[m],#1>=aft&]}]},Union@@(expnorm[#1,aft+1]&)/@Union[Table[MapAt[Sort,m/.{par+aft-1->aft,aft->par+aft-1},Position[m,[__]]],{par,First/@Position[mx,Max[mx]]}]]]];
    strnorm[n_]:=(Flatten[MapIndexed[Table[#2,{#1}]&,#1]]&)/@IntegerPartitions[n];
    kmp[n_,k_]:=kmp[n,k]=If[k==1,strnorm[n],Union[expnorm/@Join@@mps/@kmp[n,k-1]]];
    Table[Length[kmp[sum-k,k]],{sum,1,7},{k,1,sum-1}]

Extensions

a(46)-a(56) from Robert Price, May 11 2021

A096651 Lower triangular matrix T, read by rows, such that the row sums of T^n form the n-dimensional partitions.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 3, 1, 4, 1, 1, 0, 1, -1, 7, 1, 5, 1, 1, 0, 1, 15, -17, 14, 1, 6, 1, 1, 0, 1, -78, 133, -61, 25, 1, 7, 1, 1, 0, 1, 632, -1020, 529, -152, 41, 1, 8, 1, 1, 0, 1, -6049, 9826, -4989, 1506, -314, 63, 1, 9, 1, 1, 0, 1, 68036, -110514, 56161, -16668, 3532, -576, 92, 1, 10, 1, 1, 0, 1, -878337, 1427046, -724881, 214528, -44703, 7276, -972, 129, 1, 11, 1, 1, 0, 1, 12817659, -20827070, 10576885, -3123249, 647092, -103476, 13644, -1541, 175, 1, 12, 1, 1
Offset: 0

Views

Author

Paul D. Hanna and Wouter Meeussen, Jul 02 2004

Keywords

Comments

Hanna's Triangle: There exists a unique lower triangular matrix T, with ones on its diagonal, such that the row sums of T^n yields the n-dimensional partitions for all n>0. Specifically, row sums of T form A000041 (linear partitions); row sums of T^2 form A000219 (planar partitions); row sums of T^3 form A000293 (solid partitions); row sums of T^4 form A000334(4-D); row sums of T^5 form A000390(5-D); row sums of T^6 form A000416(6-D); row sums of T^7 form A000427(7-D). Rows indexed 9-13 were calculated by Wouter Meeussen.
Existence and integrality of Hanna's triangle has been proved in arXiv:1203.4419. (Suresh Govindarajan)

Examples

			Triangle T begins:
  {1},
  {0,1},
  {0,1,1},
  {0,1,1,1},
  {0,1,2,1,1},
  {0,1,1,3,1,1},
  {0,1,3,1,4,1,1},
  {0,1,-1,7,1,5,1,1},
  {0,1,15,-17,14,1,6,1,1},
  {0,1,-78,133,-61,25,1,7,1,1},
  {0,1,632,-1020,529,-152,41,1,8,1,1},
  {0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1},
  {0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1},
  {0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1},
  ...
  with row sums: {1,1,2,3,5,7,11,15,22,...} (A000041).
T^2 begins:
  {1},
  {0,1},
  {0,2,1},
  {0,3,2,1},
  {0,5,5,2,1},
  {0,7,7,7,2,1},
  {0,11,16,9,9,2,1},
  {0,15,15,31,11,11,2,1},
  {0,22,59,-4,54,13,13,2,1},
  ...
  with row sums: {1,1,3,6,13,24,48,86,...} (A000219).
		

Crossrefs

Formula

For n>=0: T(0, 0)=1, T(n+1,0)=0, T(n+1,1)=1. For n>=1: T(n, n)=1, T(n+1, n)=1, T(n+2, n)=n, T(n+3, n)=1, T(n+4, n)=n*(5+n^2)/6, T(n+5, n)=(-48+90*n-7*n^2-6*n^3-5*n^4)/24, T(n+6, n)=(400-382*n-55*n^2+30*n^3+35*n^4+12*n^5)/40 (Wouter Meeussen). Corrected entry for the zeroth and first columns of the matrix T -- entry had columns and rows interchanged (Corrected by Suresh Govindarajan)
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], where P_n(y) is the n-th row polynomial of triangle A096800.

Extensions

Rows 14-17 calculated (using extra terms in A096642-A096645 provided by Sean A. Irvine) by Wouter Meeussen, Jan 08 2011

A000334 Number of 4-dimensional partitions of n.

Original entry on oeis.org

1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
  (((1)))  (((2)))         (((3)))
           (((11)))        (((21)))
           (((1)(1)))      (((111)))
           (((1))((1)))    (((2)(1)))
           (((1)))(((1)))  (((11)(1)))
                           (((2))((1)))
                           (((1)(1)(1)))
                           (((11))((1)))
                           (((2)))(((1)))
                           (((1)(1))((1)))
                           (((11)))(((1)))
                           (((1))((1))((1)))
                           (((1)(1)))(((1)))
                           (((1))((1)))(((1)))
                           (((1)))(((1)))(((1)))
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim).

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A119269 Table by antidiagonals: number of m-dimensional partitions of n up to conjugacy, for n >= 1, m >= 0.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 2, 1, 1, 1, 4, 4, 2, 1, 1, 1, 6, 6, 4, 2, 1, 1, 1, 8, 11, 7, 4, 2, 1, 1, 1, 12, 19, 13, 7, 4, 2, 1, 1, 1, 16, 33, 25, 14, 7, 4, 2, 1, 1, 1, 22, 55, 49, 27, 14, 7, 4, 2, 1, 1, 1, 29, 95, 93, 55, 28, 14, 7, 4, 2, 1, 1, 1, 40, 158, 181, 111, 57, 28, 14, 7, 4, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.
Transposed table is A119338. - Max Alekseyev, May 14 2006

Examples

			Table starts:
  1, 1,  1,  1,  1
  1, 1,  1,  1,  1
  1, 2,  2,  2,  2
  1, 3,  4,  4,  4
  1, 4,  6,  7,  7
  1, 6, 11, 13, 14
		

Crossrefs

Formula

a(n,m) = a(n,n-2) for m >= n-1.

Extensions

More terms from Max Alekseyev, May 14 2006

A323718 Array read by antidiagonals upwards where A(n,k) is the number of k-times partitions of n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 5, 6, 4, 1, 1, 1, 7, 15, 10, 5, 1, 1, 1, 11, 28, 34, 15, 6, 1, 1, 1, 15, 66, 80, 65, 21, 7, 1, 1, 1, 22, 122, 254, 185, 111, 28, 8, 1, 1, 1, 30, 266, 604, 739, 371, 175, 36, 9, 1, 1, 1, 42, 503, 1785, 2163, 1785, 672, 260, 45, 10, 1, 1
Offset: 0

Views

Author

Gus Wiseman, Jan 25 2019

Keywords

Comments

A k-times partition of n for k > 1 is a sequence of (k-1)-times partitions, one of each part in an integer partition of n. A 1-times partition of n is just an integer partition of n, and the only 0-times partition of n is the number n itself.

Examples

			Array begins:
       k=0:   k=1:   k=2:   k=3:   k=4:   k=5:
  n=0:  1      1      1      1      1      1
  n=1:  1      1      1      1      1      1
  n=2:  1      2      3      4      5      6
  n=3:  1      3      6     10     15     21
  n=4:  1      5     15     34     65    111
  n=5:  1      7     28     80    185    371
  n=6:  1     11     66    254    739   1785
  n=7:  1     15    122    604   2163   6223
  n=8:  1     22    266   1785   8120  28413
  n=9:  1     30    503   4370  24446 101534
The A(4,2) = 15 twice-partitions:
  (4)  (31)    (22)    (211)      (1111)
       (3)(1)  (2)(2)  (11)(2)    (11)(11)
                       (2)(11)    (111)(1)
                       (21)(1)    (11)(1)(1)
                       (2)(1)(1)  (1)(1)(1)(1)
		

Crossrefs

Columns: A000012 (k=0), A000041 (k=1), A063834 (k=2), A301595 (k=3).
Rows: A000027 (n=2), A000217 (n=3), A006003 (n=4).
Main diagonal gives A306187.

Programs

  • Maple
    b:= proc(n, i, k) option remember; `if`(n=0 or k=0 or i=1,
          1, b(n, i-1, k)+b(i$2, k-1)*b(n-i, min(n-i, i), k))
        end:
    A:= (n, k)-> b(n$2, k):
    seq(seq(A(d-k, k), k=0..d), d=0..14);  # Alois P. Heinz, Jan 25 2019
  • Mathematica
    ptnlev[n_,k_]:=Switch[k,0,{n},1,IntegerPartitions[n],_,Join@@Table[Tuples[ptnlev[#,k-1]&/@ptn],{ptn,IntegerPartitions[n]}]];
    Table[Length[ptnlev[sum-k,k]],{sum,0,12},{k,0,sum}]
    (* Second program: *)
    b[n_, i_, k_] := b[n, i, k] = If[n == 0 || k == 0 || i == 1, 1,
         b[n, i - 1, k] + b[i, i, k - 1]*b[n - i, Min[n - i, i], k]];
    A[n_, k_] := b[n, n, k];
    Table[Table[A[d - k, k], {k, 0, d}], {d, 0, 14}] // Flatten (* Jean-François Alcover, May 13 2021, after Alois P. Heinz *)

Formula

Column k is the formal power product transform of column k-1, where the formal power product transform of a sequence q with offset 1 is the sequence whose ordinary generating function is Product_{n >= 1} 1/(1 - q(n) * x^n).
A(n,k) = Sum_{i=0..k} binomial(k,i) * A327639(n,i). - Alois P. Heinz, Sep 20 2019

A000390 Number of 5-dimensional partitions of n.

Original entry on oeis.org

1, 6, 21, 71, 216, 657, 1907, 5507, 15522, 43352, 119140, 323946, 869476, 2308071, 6056581, 15724170, 40393693, 102736274, 258790004, 645968054, 1598460229, 3923114261, 9554122089, 23098084695, 55458417125, 132293945737, 313657570114
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000012 (0-dim), A000041 (1-dim), A000219 (2-dim), A000293 (3-dim), A000334 (4-dim), A000416 (6-dim).
Cf. A096751 (See row 5).

Programs

  • Mathematica
    trans[x_] := If[x == {}, {}, Transpose[x]];
    levptns[n_, k_] :=
      If[k == 1, IntegerPartitions[n],
       Join @@ Table[
         Select[Tuples[levptns[#, k - 1] & /@ y],
          And @@ (GreaterEqual @@@
              trans[Flatten /@ (PadRight[#,
                    ConstantArray[n, k - 1]] & /@ #)]) &], {y,
          IntegerPartitions[n]}]];
    Table[levptns[n, 5] // Length, {n, 1, 7}] (* Robert P. P. McKone, Dec 18 2020 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010
More terms found by Suresh Govindarajan, May 30 2011

A096752 Number of n-dimensional partitions of n.

Original entry on oeis.org

1, 1, 3, 10, 45, 216, 1197, 7134, 46209, 319555, 2350183, 18254380, 149117618, 1275857233, 11396595255
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal of A096751.

Crossrefs

Formula

a(n) = n-th row sums of A096651^n, with a(0)=1.

A096806 Triangle, read by rows, such that the binomial transform of the n-th row lists the m-dimensional partitions of n, for n>=1 and m>=0.

Original entry on oeis.org

1, 1, 1, 1, 2, 1, 1, 4, 4, 1, 1, 6, 11, 7, 1, 1, 10, 27, 28, 11, 1, 1, 14, 57, 93, 64, 16, 1, 1, 21, 117, 269, 282, 131, 22, 1, 1, 29, 223, 707, 1062, 766, 244, 29, 1, 1, 41, 417, 1747, 3565, 3681, 1871, 421, 37, 1, 1, 55, 748, 4090, 10999, 15489, 11400, 4152, 683, 46, 1, 1, 76
Offset: 1

Views

Author

Paul D. Hanna, Jul 19 2004

Keywords

Comments

The n-th row equals the inverse binomial transform of n-th column of square array A096751, for n>=1. The zero-dimensional partition of n is taken to be 1 for all n.

Examples

			The number of m-dimensional partitions of 5, for m>=0, is given by the binomial transform of the 5th row:
BINOMIAL([1,6,11,7,1]) = [1,7,24,59,120,216,357,554,819,1165,...] = A008779.
Rows begin:
  [1],
  [1,  1],
  [1,  2,   1],
  [1,  4,   4,    1],
  [1,  6,  11,    7,     1],
  [1, 10,  27,   28,    11,     1],
  [1, 14,  57,   93,    64,    16,      1],
  [1, 21, 117,  269,   282,   131,     22,      1],
  [1, 29, 223,  707,  1062,   766,    244,     29,     1],
  [1, 41, 417, 1747,  3565,  3681,   1871,    421,    37,     1],
  [1, 55, 748, 4090, 10999, 15489,  11400,   4152,   683,    46,    1],
  [1, 76,1326, 9219, 31828, 58975,  59433,  31802,  8483,  1054,   56,   1],
  [1,100,2284,20095, 87490,207735, 276230, 204072, 80664, 16162, 1561,  67, 1],
  [1,134,3898,42707,230737,687665,1173533,1148939,632478,188077,29031,2234,79,1],
  ...
The inverse binomial transform of the diagonals of this triangle begin:
  [1],
  [1, 1,  1],
  [1, 3,  4,   6,  3],
  [1, 5, 16,  29,  49,   45,   15],
  [1, 9, 38, 127, 289,  540,  660,   420, 105],
  [1,13, 90, 397,1384, 3633, 7506, 10920,9765,4725,945],
  [1,20,182,1140,5266,19324,55645,125447,  ? ,  ? , ?  ,62370,10395],
  ...
		

Crossrefs

Cf. A096751, A096807 (row sums), A000065 (column k=1?), A008778 (bin trans 4th row), A042984 (bin trans 6th row)
Cf. A119271.

Formula

T(n, 0)=T(n, n-1)=1, T(n, 1)=A000041(n)-1, T(n, n-2)=(n-1)*(n-2)/2+1, for n>=1.

A096801 Triangle, read by rows, that transforms the (n+m)-dimensional partitions of n into the (n+m+1)-dimensional partitions of n, for fixed m.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 2, 1, 1, 0, 7, 3, 1, 1, 0, 26, 10, 4, 1, 1, 0, 124, 44, 13, 5, 1, 1, 0, 640, 218, 68, 16, 6, 1, 1, 0, 3695, 1208, 332, 99, 19, 7, 1, 1, 0, 23231, 7403, 2100, 457, 138, 22, 8, 1, 1, 0, 156572, 48663, 12566, 3518, 579, 186, 25, 9, 1, 1, 0, 1133838, 346636
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Transforms any diagonal of A096751 (square table of n-dimensional partitions) into the next lower diagonal in the table. It is not yet certain if this triangle contains negative terms.

Examples

			The main diagonal of A096751: {1,1,3,10,45,216,...} (A096752),
is transformed into the secondary diagonal: {1,1,4,15,71,357,...},
as demonstrated by the dot product of row #5 with A096752:
[0,26,10,4,1,1]*[1,1,3,10,45,216] = 357.
Rows begin:
[1],
[0,1],
[0,1,1],
[0,2,1,1],
[0,7,3,1,1],
[0,26,10,4,1,1],
[0,124,44,13,5,1,1],
[0,640,218,68,16,6,1,1],
[0,3695,1208,332,99,19,7,1,1],
[0,23231,7403,2100,457,138,22,8,1,1],
[0,156572,48663,12566,3518,579,186,25,9,1,1],
[0,1133838,346636,94878,18043,5787,679,244,28,10,1,1],
[0,8635777,2590866,623351,188962,20539,9391,733,313,31,11,1,1],
[0,70212042,20875236,5828851,762072,398052,13238,15009,712,394,34,12,1,1],...
		

Crossrefs

Cf. A096751, A096752, A096802 (row sums), A096803-A096805 (columns).
Showing 1-10 of 18 results. Next