cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A000293 a(n) = number of solid (i.e., three-dimensional) partitions of n.

Original entry on oeis.org

1, 1, 4, 10, 26, 59, 140, 307, 684, 1464, 3122, 6500, 13426, 27248, 54804, 108802, 214071, 416849, 805124, 1541637, 2930329, 5528733, 10362312, 19295226, 35713454, 65715094, 120256653, 218893580, 396418699, 714399381, 1281403841, 2287986987, 4067428375, 7200210523, 12693890803, 22290727268, 38993410516, 67959010130, 118016656268, 204233654229, 352245710866, 605538866862, 1037668522922, 1772700955975, 3019333854177, 5127694484375, 8683676638832, 14665233966068, 24700752691832, 41495176877972, 69531305679518
Offset: 0

Views

Author

Keywords

Comments

An ordinary partition is a row of numbers in nondecreasing order whose sum is n. Here the numbers are in a three-dimensional pile, nondecreasing in the x-, y- and z-directions.
Finding a g.f. for this sequence is an unsolved problem. At first it was thought that it was given by A000294.
Equals A000041 convolved with A002836: [1, 0, 2, 5, 12, 24, 56, 113, ...] and row sums of the convolution triangle A161564. - Gary W. Adamson, Jun 13 2009

Examples

			Examples for n=2 and n=3.
a(2) = 4: 2; 11 where the first 1 is at the origin and the second 1 is in the x, y or z direction.
a(3) = 10: 3; 21 where the 2 is at the origin and the 1 is on the x, y or z axis; 111 (a row of 3 ones on the x, y or z axes); and three 1's with one 1 at the origin and the other two 1's on two of the three axes.
From _Gus Wiseman_, Jan 22 2019: (Start)
The a(1) = 1 through a(4) = 26 solid partitions, represented as chains of chains of integer partitions:
  ((1))  ((2))       ((3))            ((4))
         ((11))      ((21))           ((22))
         ((1)(1))    ((111))          ((31))
         ((1))((1))  ((2)(1))         ((211))
                     ((11)(1))        ((1111))
                     ((2))((1))       ((2)(2))
                     ((1)(1)(1))      ((3)(1))
                     ((11))((1))      ((21)(1))
                     ((1)(1))((1))    ((11)(11))
                     ((1))((1))((1))  ((111)(1))
                                      ((2))((2))
                                      ((3))((1))
                                      ((2)(1)(1))
                                      ((21))((1))
                                      ((11))((11))
                                      ((11)(1)(1))
                                      ((111))((1))
                                      ((2)(1))((1))
                                      ((1)(1)(1)(1))
                                      ((11)(1))((1))
                                      ((2))((1))((1))
                                      ((1)(1))((1)(1))
                                      ((1)(1)(1))((1))
                                      ((11))((1))((1))
                                      ((1)(1))((1))((1))
                                      ((1))((1))((1))((1))
(End)
		

References

  • P. A. MacMahon, Memoir on the theory of partitions of numbers - Part VI, Phil. Trans. Roal Soc., 211 (1912), 345-373.
  • P. A. MacMahon, Combinatory Analysis. Cambridge Univ. Press, London and New York, Vol. 1, 1915 and Vol. 2, 1916; see vol. 2, p 332.
  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000041, A000219 (2-dim), A000294, A000334 (4-dim), A000390 (5-dim), A002835, A002836, A005980, A037452 (inverse Euler trans.), A080207, A007326, A000416 (6-dim), A000427 (7-dim), A179855 (8-dim).
Cf. A161564. - Gary W. Adamson, Jun 13 2009

Programs

  • Mathematica
    planePtns[n_]:=Join@@Table[Select[Tuples[IntegerPartitions/@ptn],And@@(GreaterEqual@@@Transpose[PadRight[#]])&],{ptn,IntegerPartitions[n]}];
    solidPtns[n_]:=Join@@Table[Select[Tuples[planePtns/@y],And@@(GreaterEqual@@@Transpose[Join@@@(PadRight[#,{n,n}]&/@#)])&],{y,IntegerPartitions[n]}];
    Table[Length[solidPtns[n]],{n,10}] (* Gus Wiseman, Jan 23 2019 *)

Extensions

More terms from the Mustonen and Rajesh article, May 02 2003
a(51)-a(62) found by Suresh Govindarajan and students, Dec 14 2010
a(63)-a(68) found by Suresh Govindarajan and students, Jun 01 2011
a(69)-a(72) found by Suresh Govindarajan and Srivatsan Balakrishnan, Jan 03 2013

A096751 Square table, read by antidiagonals, where T(n,k) equals the number of n-dimensional partitions of k.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 3, 1, 1, 1, 4, 6, 5, 1, 1, 1, 5, 10, 13, 7, 1, 1, 1, 6, 15, 26, 24, 11, 1, 1, 1, 7, 21, 45, 59, 48, 15, 1, 1, 1, 8, 28, 71, 120, 140, 86, 22, 1, 1, 1, 9, 36, 105, 216, 326, 307, 160, 30, 1, 1, 1, 10, 45, 148, 357, 657, 835, 684, 282, 42, 1
Offset: 0

Views

Author

Paul D. Hanna, Jul 07 2004

Keywords

Comments

Main diagonal forms A096752. Antidiagonal sums form A096753. Row with index n lists the row sums of the n-th matrix power of triangle A096651, for n>=0.

Examples

			n-th row lists n-dimensional partitions; table begins with n=0:
  [1,1,1,1,1,1,1,1,1,1,1,1,...],
  [1,1,2,3,5,7,11,15,22,30,42,56,...],
  [1,1,3,6,13,24,48,86,160,282,500,859,...],
  [1,1,4,10,26,59,140,307,684,1464,3122,...],
  [1,1,5,15,45,120,326,835,2145,5345,...],
  [1,1,6,21,71,216,657,1907,5507,15522,...],
  [1,1,7,28,105,357,1197,3857,12300,38430,...],
  [1,1,8,36,148,554,2024,7134,24796,84625,...],
  [1,1,9,45,201,819,3231,12321,46209,170370,...],
  [1,1,10,55,265,1165,4927,20155,80920,...],...
Array begins:
      k=0:  k=1:  k=2:  k=3:  k=4:  k=5:  k=6:  k=7:  k=8:
  n=0:  1     1     1     1     1     1     1     1     1
  n=1:  1     1     2     3     5     7    11    15    22
  n=2:  1     1     3     6    13    24    48    86   160
  n=3:  1     1     4    10    26    59   140   307   684
  n=4:  1     1     5    15    45   120   326   835  2145
  n=5:  1     1     6    21    71   216   657  1907  5507
  n=6:  1     1     7    28   105   357  1197  3857 12300
  n=7:  1     1     8    36   148   554  2024  7134 24796
  n=8:  1     1     9    45   201   819  3231 12321 46209
  n=9:  1     1    10    55   265  1165  4927 20155 80920
		

References

  • G. E. Andrews, The Theory of Partitions, Add.-Wes. 1976, pp. 189-197.

Crossrefs

Rows: A000012 (n=0), A000041 (n=1), A000219 (n=2), A000293 (n=3), A000334 (n=4), A000390 (n=5), A000416 (n=6), A000427 (n=7), A179855 (n=8).
Columns: A008778 (k=4), A008779 (k=5), A042984 (k=6).
Cf. A096806.
Cf. A042984.

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[If[sum==k,1,Length[levptns[k,sum-k]]],{sum,0,10},{k,0,sum}] (* Gus Wiseman, Jan 27 2019 *)

Formula

T(0, n)=T(n, 0)=T(n, 1)=1 for n>=0.
Inverse binomial transforms of the columns is given by triangle A096806.

A096651 Lower triangular matrix T, read by rows, such that the row sums of T^n form the n-dimensional partitions.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 0, 1, 2, 1, 1, 0, 1, 1, 3, 1, 1, 0, 1, 3, 1, 4, 1, 1, 0, 1, -1, 7, 1, 5, 1, 1, 0, 1, 15, -17, 14, 1, 6, 1, 1, 0, 1, -78, 133, -61, 25, 1, 7, 1, 1, 0, 1, 632, -1020, 529, -152, 41, 1, 8, 1, 1, 0, 1, -6049, 9826, -4989, 1506, -314, 63, 1, 9, 1, 1, 0, 1, 68036, -110514, 56161, -16668, 3532, -576, 92, 1, 10, 1, 1, 0, 1, -878337, 1427046, -724881, 214528, -44703, 7276, -972, 129, 1, 11, 1, 1, 0, 1, 12817659, -20827070, 10576885, -3123249, 647092, -103476, 13644, -1541, 175, 1, 12, 1, 1
Offset: 0

Views

Author

Paul D. Hanna and Wouter Meeussen, Jul 02 2004

Keywords

Comments

Hanna's Triangle: There exists a unique lower triangular matrix T, with ones on its diagonal, such that the row sums of T^n yields the n-dimensional partitions for all n>0. Specifically, row sums of T form A000041 (linear partitions); row sums of T^2 form A000219 (planar partitions); row sums of T^3 form A000293 (solid partitions); row sums of T^4 form A000334(4-D); row sums of T^5 form A000390(5-D); row sums of T^6 form A000416(6-D); row sums of T^7 form A000427(7-D). Rows indexed 9-13 were calculated by Wouter Meeussen.
Existence and integrality of Hanna's triangle has been proved in arXiv:1203.4419. (Suresh Govindarajan)

Examples

			Triangle T begins:
  {1},
  {0,1},
  {0,1,1},
  {0,1,1,1},
  {0,1,2,1,1},
  {0,1,1,3,1,1},
  {0,1,3,1,4,1,1},
  {0,1,-1,7,1,5,1,1},
  {0,1,15,-17,14,1,6,1,1},
  {0,1,-78,133,-61,25,1,7,1,1},
  {0,1,632,-1020,529,-152,41,1,8,1,1},
  {0,1,-6049,9826,-4989,1506,-314,63,1,9,1,1},
  {0,1,68036,-110514,56161,-16668,3532,-576,92,1,10,1,1},
  {0,1,-878337,1427046,-724881,214528,-44703,7276,-972,129,1,11,1,1},
  ...
  with row sums: {1,1,2,3,5,7,11,15,22,...} (A000041).
T^2 begins:
  {1},
  {0,1},
  {0,2,1},
  {0,3,2,1},
  {0,5,5,2,1},
  {0,7,7,7,2,1},
  {0,11,16,9,9,2,1},
  {0,15,15,31,11,11,2,1},
  {0,22,59,-4,54,13,13,2,1},
  ...
  with row sums: {1,1,3,6,13,24,48,86,...} (A000219).
		

Crossrefs

Formula

For n>=0: T(0, 0)=1, T(n+1,0)=0, T(n+1,1)=1. For n>=1: T(n, n)=1, T(n+1, n)=1, T(n+2, n)=n, T(n+3, n)=1, T(n+4, n)=n*(5+n^2)/6, T(n+5, n)=(-48+90*n-7*n^2-6*n^3-5*n^4)/24, T(n+6, n)=(400-382*n-55*n^2+30*n^3+35*n^4+12*n^5)/40 (Wouter Meeussen). Corrected entry for the zeroth and first columns of the matrix T -- entry had columns and rows interchanged (Corrected by Suresh Govindarajan)
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], where P_n(y) is the n-th row polynomial of triangle A096800.

Extensions

Rows 14-17 calculated (using extra terms in A096642-A096645 provided by Sean A. Irvine) by Wouter Meeussen, Jan 08 2011

A000334 Number of 4-dimensional partitions of n.

Original entry on oeis.org

1, 5, 15, 45, 120, 326, 835, 2145, 5345, 13220, 32068, 76965, 181975, 425490, 982615, 2245444, 5077090, 11371250, 25235790, 55536870, 121250185, 262769080, 565502405, 1209096875, 2569270050, 5427963902, 11404408525, 23836421895, 49573316740, 102610460240
Offset: 1

Views

Author

Keywords

Examples

			From _Gus Wiseman_, Jan 23 2019: (Start)
The a(1) = 1 through a(3) = 15 four-dimensional partitions, represented as chains of chains of chains of integer partitions:
  (((1)))  (((2)))         (((3)))
           (((11)))        (((21)))
           (((1)(1)))      (((111)))
           (((1))((1)))    (((2)(1)))
           (((1)))(((1)))  (((11)(1)))
                           (((2))((1)))
                           (((1)(1)(1)))
                           (((11))((1)))
                           (((2)))(((1)))
                           (((1)(1))((1)))
                           (((11)))(((1)))
                           (((1))((1))((1)))
                           (((1)(1)))(((1)))
                           (((1))((1)))(((1)))
                           (((1)))(((1)))(((1)))
(End)
		

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000219 (2-dim), A000293 (3-dim), A000390 (5-dim), A096751 (k-dim).

Programs

  • Mathematica
    trans[x_]:=If[x=={},{},Transpose[x]];
    levptns[n_,k_]:=If[k==1,IntegerPartitions[n],Join@@Table[Select[Tuples[levptns[#,k-1]&/@y],And@@(GreaterEqual@@@trans[Flatten/@(PadRight[#,ConstantArray[n,k-1]]&/@#)])&],{y,IntegerPartitions[n]}]];
    Table[Length[levptns[n,4]],{n,8}] (* Gus Wiseman, Jan 24 2019 *)

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A000416 Number of 6-dimensional partitions of n.

Original entry on oeis.org

1, 7, 28, 105, 357, 1197, 3857, 12300, 38430, 118874, 362670, 1095430, 3271751, 9673993, 28310881, 82033609, 235359901, 668779076, 1882412994, 5249817573, 14510628853
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000390 (5-dim), A000427 (7-dim).

Extensions

More terms from Sean A. Irvine, Nov 14 2010

A119340 Number of 5-dimensional partitions of n up to conjugacy.

Original entry on oeis.org

1, 1, 1, 2, 4, 7, 14, 28, 57, 117, 251, 543, 1209, 2724, 6251, 14505, 34055, 80450, 191166, 455473, 1086863, 2592817
Offset: 0

Views

Author

Max Alekseyev, May 16 2006

Keywords

Comments

Partitions are considered as generalized Ferrers diagrams; any permutation of the axes produces a conjugate.

Crossrefs

Extensions

a(18)-a(21) from Max Alekseyev, Mar 30 2025

A007328 Difference between the number of 5-dimensional partitions of n and an approximation derived from binomial(n,4).

Original entry on oeis.org

0, 0, 0, 0, 0, 15, 75, 310, 1060, 3281, 9564, 26719, 72239, 191569, 500797, 1299925, 3362473, 8697198, 22513878, 58352126, 151267141, 391728632, 1011734975, 2602330120, 6657204192, 16920629023, 42697311397, 106912113623, 265560809521, 654270114555
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Formula

a(n) = A000391(n) - A000390(n). - Sean A. Irvine, Dec 18 2017

Extensions

a(11)-a(21) from Sean A. Irvine, Dec 18 2017
More terms from Amiram Eldar, May 11 2024

A179855 Number of 8-dimensional partitions of n.

Original entry on oeis.org

1, 9, 45, 201, 819, 3231, 12321, 46209, 170370, 621316, 2240838, 8011584, 28395213, 99845553, 348333411, 1205925033, 4142850423
Offset: 1

Views

Author

Suresh Govindarajan, Jan 11 2011

Keywords

Crossrefs

Showing 1-8 of 8 results.