A096800
Triangle of coefficients, read by row polynomials P_n(y), that satisfy the g.f.: A096651(x,y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], with P_n(0)=0 for n>=1.
Original entry on oeis.org
1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, -5, 5, 0, 1, 2, 2, -5, 6, 0, 1, 6, -28, 28, -7, 7, 0, 1, 4, 90, -136, 49, -8, 8, 0, 1, 6, -738, 1082, -432, 90, -9, 9, 0, 1, 4, 6279, -9525, 4075, -969, 145, -10, 10, 0, 1, 10, -66594, 101915, -44803, 11143, -1881, 220, -11, 11, 0, 1, 4, 816362, -1260268, 565988, -144300, 25207, -3300, 318
Offset: 0
G.f.: 1/A096651(x,y) = (1-x)^y*(1-x^2)^[(y+y^2)/2]*(1-x^3)^[(2y+y^3)/3]*(1-x^4)^[(2y+y^2+y^4)/4]*(1-x^5)^[(4y-5y^2+5y^3+y^5)/5]*...
Rows begin:
[1],
[1,1],
[2,0,1],
[2,1,0,1],
[4,-5,5,0,1],
[2,2,-5,6,0,1],
[6,-28,28,-7,7,0,1],
[4,90,-136,49,-8,8,0,1],
[6,-738,1082,-432,90,-9,9,0,1],
[4,6279,-9525,4075,-969,145,-10,10,0,1],
[10,-66594,101915,-44803,11143,-1881,220,-11,11,0,1],
[4,816362,-1260268,565988,-144300,25207,-3300,318,-12,12,0,1],
[12,-11418459,17738565,-8095100,2105129,-375609,50414,-5382,442,-13,13,0,1],...
A096874
Matrix inverse of triangle A096651; transforms n-dimensional partitions into (n-1)-dimensional partitions.
Original entry on oeis.org
1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 1, 0, -1, 3, -2, -1, 1, 0, -1, -1, 5, -3, -1, 1, 0, 3, -5, -1, 7, -4, -1, 1, 0, 4, -10, 4, -2, 9, -5, -1, 1, 0, -17, 121, -146, 42, -5, 11, -6, -1, 1, 0, -27, -662, 1155, -591, 130, -11, 13, -7, -1, 1, 0, 118, 5952, -10015, 5327, -1662, 294, -21, 15, -8, -1, 1, 0, 267, -70266, 113346, -57476
Offset: 0
Rows begin:
[1],
[0,1],
[0,-1,1],
[0,0,-1,1],
[0,1,-1,-1,1],
[0,-1,3,-2,-1,1],
[0,-1,-1,5,-3,-1,1],
[0,3,-5,-1,7,-4,-1,1],
[0,4,-10,4,-2,9,-5,-1,1],
[0,-17,121,-146,42,-5,11,-6,-1,1],
[0,-27,-662,1155,-591,130,-11,13,-7,-1,1],
[0,118,5952,-10015,5327,-1662,294,-21,15,-8,-1,1],
[0,267,-70266,113346,-57476,17435,-3843,565,-36,17,-9,-1,1],
[0,-917,908722,-1473694,746476,-220017,46320,-7821,979,-57,19,-10,-1,1],...
A096642
Column with index 2 of triangle A096651: a(n) = A096651(n+2,2).
Original entry on oeis.org
1, 1, 2, 1, 3, -1, 15, -78, 632, -6049, 68036, -878337, 12817659, -208803098, 3758607935, -74132077726, 1590647874073
Offset: 0
a(12)-a(16) taken from a096651.txt.
M. F. Hasler, Apr 12 2012
A096742
Numerator of a(n)/2^A005187(n-1), the n-th row sums of A096651^(1/2), with a(0)=1.
Original entry on oeis.org
1, 1, 3, 15, 41, 387, 1017, 4715, 11917, 220323, 517545, 2403313, 6436023, 58028007, 53008869
Offset: 0
Sequence begins: {1,1,3/2,15/8,41/16,387/128,1017/256,...}.
Formed from the row sums of triangular matrix A096651^(1/2), which begins:
{1},
{0,1},
{0,1/2,1},
{0,3/8,1/2,1},
{0,3/16,7/8,1/2,1},
{0,27/128,-1/16,11/8,1/2,1},
{0,35/256,99/128,-5/16,15/8,1/2,1},
{0,103/1024,-229/256,267/128,-9/16,19/8,1/2,1},
{0,-129/2048,7011/1024,-2349/256,595/128,-13/16,23/8,1/2,1},...
The denominator of each element at column n, row k, is A005187(n-k).
A096743
Numerator of a(n)/2^A005187(n-1), the n-th row sums of A096651^(3/2), with a(0)=1.
Original entry on oeis.org
1, 1, 5, 35, 135, 1755, 6303, 39815, 132675, 3322515, 10561455, 64566253, 199681945, 2391238415, 7233344915
Offset: 0
Sequence begins: {1,1,5/2,35/8,135/16,1755/128,6303/256,...}.
Formed from the row sums of triangular matrix A096651^(3/2), which begins:
{1},
{0,1},
{0,3/2,1},
{0,15/8,3/2,1},
{0,41/16,27/8,3/2,1},
{0,387/128,53/16,39/8,3/2,1},
{0,1017/256,987/128,65/16,51/8,3/2,1},
{0,4715/1024,753/256,2067/128,77/16,63/8,3/2,1},
{0,11917/2048,29983/1024,-4503/256,3819/128,89/16,75/8,3/2,1},...
The denominator of each element at column n, row k, is A005187(n-k).
A096875
Matrix square of inverse triangle A096651; transforms n-dimensional partitions into (n-2)-dimensional partitions.
Original entry on oeis.org
1, 0, 1, 0, -2, 1, 0, 1, -2, 1, 0, 3, -1, -2, 1, 0, -6, 9, -3, -2, 1, 0, -3, -7, 15, -5, -2, 1, 0, 23, -27, -6, 21, -7, -2, 1, 0, 9, 15, -32, -5, 27, -9, -2, 1, 0, -141, 360, -267, 16, -6, 33, -11, -2, 1, 0, -74, -1603, 2691, -1216, 161, -11, 39, -13, -2, 1, 0, 1139, 10961, -20469, 11512, -3489, 457, -22, 45, -15, -2, 1, 0, 1119
Offset: 0
Rows begin:
[1],
[0,1],
[0,-2,1],
[0,1,-2,1],
[0,3,-1,-2,1],
[0,-6,9,-3,-2,1],
[0,-3,-7,15,-5,-2,1],
[0,23,-27,-6,21,-7,-2,1],
[0,9,15,-32,-5,27,-9,-2,1],
[0,-141,360,-267,16,-6,33,-11,-2,1],
[0,-74,-1603,2691,-1216,161,-11,39,-13,-2,1],
[0,1139,10961,-20469,11512,-3489,457,-22,45,-15,-2,1],
[0,1119,-140656,226512,-116125,36536,-8079,968,-41,51,-17,-2,1],
[0,-10921,1858877,-2993422,1507887,-444319,95633,-16387,1768,-70,57,-19,-2,1],...
A007042
Left diagonal of partition triangle A047812.
Original entry on oeis.org
0, 1, 3, 5, 9, 13, 20, 28, 40, 54, 75, 99, 133, 174, 229, 295, 383, 488, 625, 790, 1000, 1253, 1573, 1956, 2434, 3008, 3716, 4563, 5602, 6840, 8347, 10141, 12308, 14881, 17975, 21635, 26013, 31183, 37336, 44581, 53172, 63259, 75173, 89132, 105556, 124752
Offset: 1
- N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
- S. Govindarajan, Notes on higher-dimensional partitions, arXiv:1203.4419 [math.CO], 2012.
- R. K. Guy, Letter to N. J. A. Sloane, Aug. 1992.
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Preprint, 1992. (Annotated scanned copy)
- R. K. Guy, Parker's permutation problem involves the Catalan numbers, Amer. Math. Monthly 100 (1993), 287-289.
-
using Nemo
function A007042List(len)
R, z = PolynomialRing(ZZ, "z")
e = eta_qexp(-1, len+2, z)
[coeff(e, j) - 2 for j in 2:len+1] end
A007042List(45) |> println # Peter Luschny, May 30 2020
-
f[n_]:= Length[Select[IntegerPartitions[2 n], First[#]==n-1 &]]; Table[f[n], {n, 1, 24}] (* Clark Kimberling, Mar 13 2012 *)
a[n_]:= PartitionsP[n+1]-2; Table[a[n], {n,1,50}] (* Jean-François Alcover, Jan 28 2015, after M. F. Hasler *)
-
A007042(n)=numbpart(n+1)-2 \\ M. F. Hasler, Apr 12 2012
Showing 1-10 of 17 results.
Comments