cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A096800 Triangle of coefficients, read by row polynomials P_n(y), that satisfy the g.f.: A096651(x,y) = Product_{n>=1} 1/(1-x^n)^[P_n(y)/n], with P_n(0)=0 for n>=1.

Original entry on oeis.org

1, 1, 1, 2, 0, 1, 2, 1, 0, 1, 4, -5, 5, 0, 1, 2, 2, -5, 6, 0, 1, 6, -28, 28, -7, 7, 0, 1, 4, 90, -136, 49, -8, 8, 0, 1, 6, -738, 1082, -432, 90, -9, 9, 0, 1, 4, 6279, -9525, 4075, -969, 145, -10, 10, 0, 1, 10, -66594, 101915, -44803, 11143, -1881, 220, -11, 11, 0, 1, 4, 816362, -1260268, 565988, -144300, 25207, -3300, 318
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Row sums form the positive integers. The first column forms the totients (A000010). The inverse Moebius transform of each column forms the columns of triangle {n/k*A096799(n,k)}. A generalized Euler transform of the row polynomials of this triangle generates A096651; the row sums of A096651^n form the n-dimensional partitions.

Examples

			G.f.: 1/A096651(x,y) = (1-x)^y*(1-x^2)^[(y+y^2)/2]*(1-x^3)^[(2y+y^3)/3]*(1-x^4)^[(2y+y^2+y^4)/4]*(1-x^5)^[(4y-5y^2+5y^3+y^5)/5]*...
Rows begin:
[1],
[1,1],
[2,0,1],
[2,1,0,1],
[4,-5,5,0,1],
[2,2,-5,6,0,1],
[6,-28,28,-7,7,0,1],
[4,90,-136,49,-8,8,0,1],
[6,-738,1082,-432,90,-9,9,0,1],
[4,6279,-9525,4075,-969,145,-10,10,0,1],
[10,-66594,101915,-44803,11143,-1881,220,-11,11,0,1],
[4,816362,-1260268,565988,-144300,25207,-3300,318,-12,12,0,1],
[12,-11418459,17738565,-8095100,2105129,-375609,50414,-5382,442,-13,13,0,1],...
		

Crossrefs

A096874 Matrix inverse of triangle A096651; transforms n-dimensional partitions into (n-1)-dimensional partitions.

Original entry on oeis.org

1, 0, 1, 0, -1, 1, 0, 0, -1, 1, 0, 1, -1, -1, 1, 0, -1, 3, -2, -1, 1, 0, -1, -1, 5, -3, -1, 1, 0, 3, -5, -1, 7, -4, -1, 1, 0, 4, -10, 4, -2, 9, -5, -1, 1, 0, -17, 121, -146, 42, -5, 11, -6, -1, 1, 0, -27, -662, 1155, -591, 130, -11, 13, -7, -1, 1, 0, 118, 5952, -10015, 5327, -1662, 294, -21, 15, -8, -1, 1, 0, 267, -70266, 113346, -57476
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Row sums form {1,1,0,0,0,...(zeros continue)}.

Examples

			Rows begin:
[1],
[0,1],
[0,-1,1],
[0,0,-1,1],
[0,1,-1,-1,1],
[0,-1,3,-2,-1,1],
[0,-1,-1,5,-3,-1,1],
[0,3,-5,-1,7,-4,-1,1],
[0,4,-10,4,-2,9,-5,-1,1],
[0,-17,121,-146,42,-5,11,-6,-1,1],
[0,-27,-662,1155,-591,130,-11,13,-7,-1,1],
[0,118,5952,-10015,5327,-1662,294,-21,15,-8,-1,1],
[0,267,-70266,113346,-57476,17435,-3843,565,-36,17,-9,-1,1],
[0,-917,908722,-1473694,746476,-220017,46320,-7821,979,-57,19,-10,-1,1],...
		

Crossrefs

Cf. A096651.

A096642 Column with index 2 of triangle A096651: a(n) = A096651(n+2,2).

Original entry on oeis.org

1, 1, 2, 1, 3, -1, 15, -78, 632, -6049, 68036, -878337, 12817659, -208803098, 3758607935, -74132077726, 1590647874073
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The row sums of A096651^n form the n-dimensional partitions.

Crossrefs

Cf. A096651.

Extensions

a(12)-a(16) taken from a096651.txt. M. F. Hasler, Apr 12 2012

A096645 Column with index 5 of triangle A096651: a(n) = A096651(n+5,5).

Original entry on oeis.org

1, 1, 5, 1, 25, -152, 1506, -16668, 214528, -3123249
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The row sums of A096651^n form the n-dimensional partitions.

Crossrefs

Cf. A096651.

A096742 Numerator of a(n)/2^A005187(n-1), the n-th row sums of A096651^(1/2), with a(0)=1.

Original entry on oeis.org

1, 1, 3, 15, 41, 387, 1017, 4715, 11917, 220323, 517545, 2403313, 6436023, 58028007, 53008869
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The denominators are 2^A005187(n-1) (for n>0), where A005187(n) is the number of 1's in binary expansion of 2n. Can the row sums of A096651^(1/2) be said to define the (1/2)-dimensional partitions of n?

Examples

			Sequence begins: {1,1,3/2,15/8,41/16,387/128,1017/256,...}.
Formed from the row sums of triangular matrix A096651^(1/2), which begins:
{1},
{0,1},
{0,1/2,1},
{0,3/8,1/2,1},
{0,3/16,7/8,1/2,1},
{0,27/128,-1/16,11/8,1/2,1},
{0,35/256,99/128,-5/16,15/8,1/2,1},
{0,103/1024,-229/256,267/128,-9/16,19/8,1/2,1},
{0,-129/2048,7011/1024,-2349/256,595/128,-13/16,23/8,1/2,1},...
The denominator of each element at column n, row k, is A005187(n-k).
		

Crossrefs

A096743 Numerator of a(n)/2^A005187(n-1), the n-th row sums of A096651^(3/2), with a(0)=1.

Original entry on oeis.org

1, 1, 5, 35, 135, 1755, 6303, 39815, 132675, 3322515, 10561455, 64566253, 199681945, 2391238415, 7233344915
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The denominators are 2^A005187(n-1) (for n>0), where A005187(n) is the number of 1's in binary expansion of 2n. Can the row sums of A096651^(3/2) be said to define the (3/2)-dimensional partitions of n?

Examples

			Sequence begins: {1,1,5/2,35/8,135/16,1755/128,6303/256,...}.
Formed from the row sums of triangular matrix A096651^(3/2), which begins:
{1},
{0,1},
{0,3/2,1},
{0,15/8,3/2,1},
{0,41/16,27/8,3/2,1},
{0,387/128,53/16,39/8,3/2,1},
{0,1017/256,987/128,65/16,51/8,3/2,1},
{0,4715/1024,753/256,2067/128,77/16,63/8,3/2,1},
{0,11917/2048,29983/1024,-4503/256,3819/128,89/16,75/8,3/2,1},...
The denominator of each element at column n, row k, is A005187(n-k).
		

Crossrefs

Formula

a(n)/2^A005187(n-1) = Sum_{k=0..n} A096651(n, k)*A096742(k)/2^A005187(k-1).

A096875 Matrix square of inverse triangle A096651; transforms n-dimensional partitions into (n-2)-dimensional partitions.

Original entry on oeis.org

1, 0, 1, 0, -2, 1, 0, 1, -2, 1, 0, 3, -1, -2, 1, 0, -6, 9, -3, -2, 1, 0, -3, -7, 15, -5, -2, 1, 0, 23, -27, -6, 21, -7, -2, 1, 0, 9, 15, -32, -5, 27, -9, -2, 1, 0, -141, 360, -267, 16, -6, 33, -11, -2, 1, 0, -74, -1603, 2691, -1216, 161, -11, 39, -13, -2, 1, 0, 1139, 10961, -20469, 11512, -3489, 457, -22, 45, -15, -2, 1, 0, 1119
Offset: 0

Views

Author

Paul D. Hanna, Jul 13 2004

Keywords

Comments

Also matrix square of triangle A096874. Row sums form A096876.

Examples

			Rows begin:
[1],
[0,1],
[0,-2,1],
[0,1,-2,1],
[0,3,-1,-2,1],
[0,-6,9,-3,-2,1],
[0,-3,-7,15,-5,-2,1],
[0,23,-27,-6,21,-7,-2,1],
[0,9,15,-32,-5,27,-9,-2,1],
[0,-141,360,-267,16,-6,33,-11,-2,1],
[0,-74,-1603,2691,-1216,161,-11,39,-13,-2,1],
[0,1139,10961,-20469,11512,-3489,457,-22,45,-15,-2,1],
[0,1119,-140656,226512,-116125,36536,-8079,968,-41,51,-17,-2,1],
[0,-10921,1858877,-2993422,1507887,-444319,95633,-16387,1768,-70,57,-19,-2,1],...
		

Crossrefs

A096643 Column with index 3 of triangle A096651: a(n) = A096651(n+3,3).

Original entry on oeis.org

1, 1, 3, 1, 7, -17, 133, -1020, 9826, -110514, 1427046, -20827070
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The row sums of A096651^n form the n-dimensional partitions.

Crossrefs

Cf. A096651.

A096644 Column with index 4 of triangle A096651: a(n) = A096651(n+4,4).

Original entry on oeis.org

1, 1, 4, 1, 14, -61, 529, -4989, 56161, -724881, 10576885
Offset: 0

Views

Author

Paul D. Hanna, Jul 06 2004

Keywords

Comments

The row sums of A096651^n form the n-dimensional partitions.

Crossrefs

Cf. A096651.

A007042 Left diagonal of partition triangle A047812.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 20, 28, 40, 54, 75, 99, 133, 174, 229, 295, 383, 488, 625, 790, 1000, 1253, 1573, 1956, 2434, 3008, 3716, 4563, 5602, 6840, 8347, 10141, 12308, 14881, 17975, 21635, 26013, 31183, 37336, 44581, 53172, 63259, 75173, 89132, 105556, 124752
Offset: 1

Views

Author

Keywords

Comments

For n > 2, a(n) is also the number of partitions of n into parts <= n-2: a(n) = A026820(n+1, n-1). - Reinhard Zumkeller, Jan 21 2010
Also, the number of partitions of 2*n in which n-1 is the maximal part; see the Mathematica section. - Clark Kimberling, Mar 13 2012
This is column 2 of the matrix A in Sect. 2.3 of the Govindarajan preprint, cf. references and A096651. - M. F. Hasler, Apr 12 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    using Nemo
    function A007042List(len)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(-1, len+2, z)
        [coeff(e, j) - 2 for j in 2:len+1] end
    A007042List(45) |> println # Peter Luschny, May 30 2020
  • Mathematica
    f[n_]:= Length[Select[IntegerPartitions[2 n], First[#]==n-1 &]]; Table[f[n], {n, 1, 24}] (* Clark Kimberling, Mar 13 2012 *)
    a[n_]:= PartitionsP[n+1]-2; Table[a[n], {n,1,50}] (* Jean-François Alcover, Jan 28 2015, after M. F. Hasler *)
  • PARI
    A007042(n)=numbpart(n+1)-2  \\ M. F. Hasler, Apr 12 2012
    

Formula

a(n) = A000041(n+1) - 2. - Vladeta Jovovic, Oct 06 2001

Extensions

More terms from James Sellers
Name edited by Petros Hadjicostas, May 31 2020
Showing 1-10 of 17 results. Next