cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 19 results. Next

A008284 Triangle of partition numbers: T(n,k) = number of partitions of n in which the greatest part is k, 1 <= k <= n. Also number of partitions of n into k positive parts, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1, 1, 7, 16, 23, 23, 20, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010: (Start)
A000041(n+1) = 1 + Sum_{r=1..n} Sum_{k=1..min(r,n-r+1)} T(r,k).
T(n, n-k) is also the number of partitions of k in which the greatest part is at most n-k. (End)
From Richard R. Forberg, Dec 26 2014: (Start)
Elements of T(n, k) for n <= 2+3k, equal A000041(n-k) - A000070(n-2k-1), with the assumption A000070(n) = 0 for n < 0.
The diagonal T(2+2k, k), for k > 1 equals A007042, and the diagonal T(3+3k,k), for k >= 1, equals A104384. (End)
T(-n, k) is used as a definition for A380038, which can therefore be seen as an extension of this sequence for negative n. - Friedjof Tellkamp, Jan 18 2025

Examples

			The triangle T(n,k) begins:
   n\k 1  2  3  4  5  6  7  8  9 10 11 12 ...
   1:  1
   2:  1  1
   3:  1  1  1
   4:  1  2  1  1
   5:  1  2  2  1  1
   6:  1  3  3  2  1  1
   7:  1  3  4  3  2  1  1
   8:  1  4  5  5  3  2  1  1
   9:  1  4  7  6  5  3  2  1  1
  10:  1  5  8  9  7  5  3  2  1  1
  11:  1  5 10 11 10  7  5  3  2  1  1
  12:  1  6 12 15 13 11  7  5  3  2  1  1
... Reformatted and extended by _Wolfdieter Lang_, Dec 03 2012; additional extension by _Bob Selcoe_, Jun 09 2013
T(7,3) = 4 because we have [3,3,1], [3,2,2], [3,2,1,1] and [3,1,1,1,1], each having greatest part 3; or [5,1,1], [4,2,1], [3,3,1] and [3,2,2] each having 3 parts.
* Example from formula above: T(10,4) = 9 because T(6,4) + T(6,3) + T(6,2) + T(6,1) = 2 + 3 + 3 + 1 = 9.
* P(n) = P(n-1) + DT(n-1). P(n) = unordered partitions of n. (A000041) DT(n-1) = sum of diagonals beginning at T(n-1,1).
Example P(11) = 56, P(10) = 42, sum DT(10) = 1 + 4 + 5 + 3 + 1 = 14. - _Bob Selcoe_, Jun 09 2013
From _Omar E. Pol_, Nov 19 2019: (Start)
Illustration of initial terms: T(n,k) is also the number of vertical line segments in the k-th column of the n-th diagram, which represents the partitions of n:
.
    1    1 1    1 1 1    1 2 1 1    1 2 2 1 1    1 3 3 2 1 1    1 3 4 3 2 1 1
.
   _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |   _| | | | | | |
        _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |   _ _| | | | | |
               _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |   _ _ _| | | | |
                        _ _|   |   _ _|   | |   _ _|   | | |   _ _|   | | | |
                        _ _ _ _|   _ _ _ _| |   _ _ _ _| | |   _ _ _ _| | | |
                                   _ _ _|   |   _ _ _|   | |   _ _ _|   | | |
                                   _ _ _ _ _|   _ _ _ _ _| |   _ _ _ _ _| | |
                                                _ _|   |   |   _ _|   |   | |
                                                _ _ _ _|   |   _ _ _ _|   | |
                                                _ _ _|     |   _ _ _|     | |
                                                _ _ _ _ _ _|   _ _ _ _ _ _| |
                                                               _ _ _|   |   |
                                                               _ _ _ _ _|   |
                                                               _ _ _ _|     |
                                                               _ _ _ _ _ _ _|
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley Professional, 2005, pp. 38, 45, 50 [From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010]
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 400.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 294.

Crossrefs

A000041 is row sums and diagonal.
Partial sums of rows gives A026820.
Read from right to left gives A058398.
Subtriangle of A072233 without row n=0 and column m=0.
Cf. A007042, A104384 which are diagonals with slope -2, -3.

Programs

  • Haskell
    a008284 n k = a008284_tabl !! (n-1) !! (k-1)
    a008284_row n = a008284_tabl !! (n-1)
    a008284_tabl = [1] : f [[1]] where
       f xss = ys : f (ys : xss) where
         ys = (map sum $ zipWith take [1..] xss) ++ [1]
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    G:=-1+1/product(1-t*x^j,j=1..15): Gser:=simplify(series(G,x=0,17)): for n from 1 to 14 do P[n]:=coeff(Gser,x^n) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 12 2006
    with(combstruct):for n from 0 to 18 do seq(count(Partition(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Mar 30 2009
    T := proc(n,k) option remember; if k < 0 or n < 0 then 0 elif k = 0 then if n = 0 then 1 else 0 fi else T(n - 1, k - 1) + T(n - k, k) fi end: seq(print(seq(T(n, k), k=1..n)),n=1..14); # Peter Luschny, Jul 24 2011
  • Mathematica
    Column[Table[ IntegerPartitions[n, {k}] // Length, {n, 1, 20}, {k, 1, n}], Center] (* Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010 *)
    (*Recurrence closely related to natural numbers and number of divisors of n*)
    Clear[t]; nn = 14; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0];Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]][[1 ;; 96]] (* Mats Granvik, Jan 01 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[a q, q], {q, 0, n}, {a, 0, k}], {n, 1, 15}, {k, 1, n}] // Column (* Vladimir Reshetnikov, Nov 18 2016 *)
    T[n_, k_] := T[n, k] = If[n>0 && k>0, T[n-1, k-1] + T[n-k, k], Boole[n==0 && k==0]]
    Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Robert A. Russell, May 12 2018 after Knuth 7.2.1.4 (39) *)
  • PARI
    T(n,k)=#partitions(n-k,k)
    for(n=1,9,for(k=1,n,print1(T(n,k)", "))) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    A8284=[]; A008284(n,k)={for(n=#A8284+1,n,A8284=concat(A8284,[vector(n,k,if(2*k1,A8284[n-k][k]+A8284[n-1][k-1],1),numbpart(n-k)))]));if(k,A8284[n][k],A8284[n])} \\ Without 2nd argument, return row n. - M. F. Hasler, Sep 26 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A008284_T(n,k):
        if k==n or k==1: return 1
        if k>n: return 0
        return A008284_T(n-1,k-1)+A008284_T(n-k,k) # Chai Wah Wu, Sep 21 2023
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (1..n)] for n in (1..12)] # Peter Luschny, Aug 01 2015
    

Formula

T(n, k) = Sum_{i=1..k} T(n-k, i), for 1 <= k <= n-1; T(n, n) = 1 for n >= 1.
Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k > n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. for k-th column: x^k/(Product_{j=1..k} (1-x^j)). - Wolfdieter Lang, Nov 29 2000
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^(P_n(y)/n), where P_n(y) = Sum_{d|n} eulerphi(n/d)*y^d. - Paul D. Hanna, Jul 13 2004
If k >= n/2, T(n,k) = T(2(n-k),n-k) = A000041(n-k). - Franklin T. Adams-Watters, Jan 12 2006 [Relation included by Hans Loeblich, Apr 16 2019, relation extended by Evan Robinson, Jun 30 2021]
G.f.: G(t,x) = -1 + 1/Product_{j>=1} (1-t*x^j). - Emeric Deutsch, Feb 12 2006
A002865(n) = Sum_{k=2..floor((n+2)/2)} T(n-k+1,k-1). - Reinhard Zumkeller, Nov 04 2007
A000700(n) = Sum_{k=1..n} (-1)^(n-k) T(n,k). - Jeremy L. Martin, Jul 06 2013
G.f.: -1 + e^(F(x,z)), where F(x,z) = Sum_{n >= 1} (x*z)^n/(n*(1 - z^n)) is a g.f. for A126988. - Peter Bala, Jan 13 2015
Also, T(n, n-k) = k for k = 1, 2, 3; n >= 2k. T(n, 2) = floor(n/2). T(n, 3) = round(n^2/12). - M. F. Hasler, Sep 26 2017
T(n,k) = [n>0 & k>0] * (T(n-1,k-1) + T(n-k,k)) + [n==0 & k==0]. - Robert A. Russell, May 12 2018 from Knuth 7.2.1.4 (39)
T(n, k) = Sum_{i=0..n-1} T(n-ik-1, k-1) for k >= 1; T(-n, k) = 0 for n > 0; T(n, 0) = [n==0]. - Joshua Swanson (writing for Juexian Li), May 24 2020

A026820 Euler's table: triangular array T read by rows, where T(n,k) = number of partitions in which every part is <= k for 1 <= k <= n. Also number of partitions of n into at most k parts.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 3, 4, 5, 1, 3, 5, 6, 7, 1, 4, 7, 9, 10, 11, 1, 4, 8, 11, 13, 14, 15, 1, 5, 10, 15, 18, 20, 21, 22, 1, 5, 12, 18, 23, 26, 28, 29, 30, 1, 6, 14, 23, 30, 35, 38, 40, 41, 42, 1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56, 1, 7, 19, 34, 47, 58, 65, 70, 73, 75, 76, 77
Offset: 1

Views

Author

Keywords

Examples

			Triangle starts:
  1;
  1, 2;
  1, 2,  3;
  1, 3,  4,  5;
  1, 3,  5,  6,  7;
  1, 4,  7,  9, 10, 11;
  1, 4,  8, 11, 13, 14, 15;
  1, 5, 10, 15, 18, 20, 21, 22;
  1, 5, 12, 18, 23, 26, 28, 29, 30;
  1, 6, 14, 23, 30, 35, 38, 40, 41, 42;
  1, 6, 16, 27, 37, 44, 49, 52, 54, 55, 56;
  ...
		

References

  • G. Chrystal, Algebra, Vol. II, p. 558.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.

Crossrefs

Partial sums of rows of A008284, row sums give A058397, central terms give A171985, mirror is A058400.
T(n,n) = A000041(n), T(n,1) = A000012(n), T(n,2) = A008619(n) for n>1, T(n,3) = A001399(n) for n>2, T(n,4) = A001400(n) for n>3, T(n,5) = A001401(n) for n>4, T(n,6) = A001402(n) for n>5, T(n,7) = A008636(n) for n>6, T(n,8) = A008637(n) for n>7, T(n,9) = A008638(n) for n>8, T(n,10) = A008639(n) for n>9, T(n,11) = A008640(n) for n>10, T(n,12) = A008641(n) for n>11, T(n,n-2) = A007042(n-1) for n>2, T(n,n-1) = A000065(n) for n>1.

Programs

  • Haskell
    import Data.List (inits)
    a026820 n k = a026820_tabl !! (n-1) !! (k-1)
    a026820_row n = a026820_tabl !! (n-1)
    a026820_tabl = zipWith
       (\x -> map (p x) . tail . inits) [1..] $ tail $ inits [1..] where
       p 0 _ = 1
       p _ [] = 0
       p m ks'@(k:ks) = if m < k then 0 else p (m - k) ks' + p m ks
    -- Reinhard Zumkeller, Dec 18 2013
    
  • Maple
    T:= proc(n, k) option remember;
          `if`(n=0 or k=1, 1, T(n, k-1) + `if`(k>n, 0, T(n-k, k)))
        end:
    seq(seq(T(n, k), k=1..n), n=1..12); # Alois P. Heinz, Apr 21 2012
  • Mathematica
    t[n_, k_] := Length@ IntegerPartitions[n, k]; Table[ t[n, k], {n, 12}, {k, n}] // Flatten
    (* Second program: *)
    T[n_, k_] := T[n, k] = If[n==0 || k==1, 1, T[n, k-1] + If[k>n, 0, T[n-k, k]]]; Table[T[n, k], {n, 1, 12}, {k, 1, n}] // Flatten (* Jean-François Alcover, Sep 22 2015, after Alois P. Heinz *)
  • PARI
    T(n,k)=my(s); forpart(v=n,s++,,k); s \\ Charles R Greathouse IV, Feb 27 2018
    
  • SageMath
    from sage.combinat.partition import number_of_partitions_length
    from itertools import accumulate
    for n in (1..11):
        print(list(accumulate([number_of_partitions_length(n, k) for k in (1..n)])))
    # Peter Luschny, Jul 28 2022

Formula

T(T(n,n),n) = A134737(n). - Reinhard Zumkeller, Nov 07 2007
T(A000217(n),n) = A173519(n). - Reinhard Zumkeller, Feb 20 2010
T(n,k) = T(n,k-1) + T(n-k,k). - Thomas Dybdahl Ahle, Jun 13 2011
T(n,k) = Sum_{i=1..min(k,floor(n/2))} T(n-i,i) + Sum_{j=1+floor(n/2)..k} A000041(n-j). - Bob Selcoe, Aug 22 2014 [corrected by Álvar Ibeas, Mar 15 2018]
O.g.f.: Product_{i>=0} 1/(1-y*x^i). - Geoffrey Critzer, Mar 11 2012
T(n,k) = A008284(n+k,k). - Álvar Ibeas, Jan 06 2015

A047812 Parker's partition triangle T(n,k) read by rows (n >= 1 and 0 <= k <= n-1).

Original entry on oeis.org

1, 1, 1, 1, 3, 1, 1, 5, 7, 1, 1, 9, 20, 11, 1, 1, 13, 48, 51, 18, 1, 1, 20, 100, 169, 112, 26, 1, 1, 28, 194, 461, 486, 221, 38, 1, 1, 40, 352, 1128, 1667, 1210, 411, 52, 1, 1, 54, 615, 2517, 4959, 5095, 2761, 720, 73, 1, 1, 75, 1034, 5288, 13241, 18084, 13894, 5850, 1221, 97, 1
Offset: 1

Views

Author

Keywords

Comments

The entries in row n are the coefficients of q^(k*(n+1)) in the q-binomial coefficient [2n, n], where k runs from 0 to n-1. - James Sellers
T(n,k) is the number of partitions of k*(n+1) into at most n parts each no bigger than n (see the links). - Petros Hadjicostas, May 30 2020
Named after the American mathematician Ernest Tilden Parker (1926-1991). - Amiram Eldar, Jun 20 2021

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) starts:
  1;
  1,  1;
  1,  3,  1;
  1,  5,  7   1;
  1,  9, 20, 11,  1;
  1, 13, 48, 51, 18, 1;
  ...
		

Crossrefs

Cf. A000108 (row sums), A136621 (mirror image).

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
           b(k*(n+1), n$2):
    seq(seq(T(n, k), k=0..n-1), n=1..12);  # Alois P. Heinz, May 30 2020
  • Mathematica
    s[n_] := s[n] = Series[Product[(1-q^(2n-k)) / (1-q^(k+1)), {k, 0, n-1}], {q, 0, n^2}];
    t[n_, k_] := SeriesCoefficient[s[n], k(n+1)];
    Flatten[Table[t[n, k], {n, 1, 12}, {k, 0, n-1}]] (* Jean-François Alcover, Jan 27 2012 *)
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    T[n_, k_] := b[k(n+1), n, n];
    Table[T[n, k], {n, 1, 12}, {k, 0, n - 1}] // Flatten (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    T(n,k) = #partitions(k*(n+1), n,n);
    for (n=1, 10, for (k=0, n-1, print1(T(n,k), ", "); ); print(); ); \\ Petros Hadjicostas, May 30 2020
    /* Second program, courtesy of G. C. Greubel */
    T(n,k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    vector(12, n, vector(n, k, T(n,k-1))); \\ Petros Hadjicostas, May 31 2020

Extensions

More terms from James Sellers
Offset corrected by Alois P. Heinz, May 30 2020

A007043 Number of noncommutative SL(2,C)-invariants of degree n in 5 variables.

Original entry on oeis.org

1, 0, 1, 1, 5, 16, 65, 260, 1085, 4600, 19845, 86725, 383251, 1709566, 7687615, 34812519, 158614405, 726612216, 3344696501, 15462729645, 71763732545, 334236300200, 1561686608685, 7318223046860, 34386154568375, 161970182441556, 764676831501575, 3617755131480841
Offset: 0

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000108, A348210 (column k=2).

Programs

  • Maple
    F := (t^2+3*t+1)/((t+1)*(4*t+1)^(1/2)); G := t/(t^2+3*t+1); Ginv := RootOf(numer(G-x),t);  ogf := series(eval(F,t=Ginv),x=0,20); # Mark van Hoeij, Oct 30 2011
  • Mathematica
    CoefficientList[Series[Sqrt[2]/Sqrt[(1 - x)*((1 + 5*x) + Sqrt[(1 - 5*x)*(1 - x)])], {x, 0, 20}], x] (* Vaclav Kotesovec, Jun 24 2016, after Almkvist, Dicks and Formanek *)
    a[n_]:= c[0, n, 2]-c[1, n, 2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)

Formula

From Paul Barry, Oct 18 2007: (Start)
a(n) = Sum{k=0..n} Sum{j=0..k} C(n,k)*C(k,j)*(-3)^(k-j)*A000108(j);
a(n) = (1/(2*Pi))*Integral_{x=0..4} (1 - 3*x + x^2)^n*sqrt(x*(4 - x))/x dx. (End)
G.f.: F(G^(-1)(x)), where F(t) := (t^2 + 3*t + 1)/((t + 1)*(4*t + 1)^(1/2)) and G(t) := t/(t^2 + 3*t + 1). - Mark van Hoeij, Oct 30 2011
a(n) ~ 5^n/(8*sqrt(Pi)*n^(3/2)) * (1 - 15/(16*n) + O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence: 2*n*(2*n + 1)*(3*n - 5)*a(n) = (n-1)*(3*n - 2)*(19*n - 20)*a(n-1) + 10*(n-1)*n*(3*n - 5)*a(n-2) - 25*(n-2)*(n-1)*(3*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*Integral_{x=0..2*Pi} (sin(5*x)/sin(x))^n*(sin(x))^2. - Thomas Curtright, Jun 24 2016

A051643 Central elements in Parker's partition triangle.

Original entry on oeis.org

1, 3, 20, 169, 1667, 18084, 208960, 2527074, 31630390, 406680465, 5342750699, 71442850111, 969548468960, 13323571588607, 185072895183632, 2594890728951909, 36681505784903758, 522291180086851188, 7484621370716999785, 107876522368295972285, 1562916545414144667559
Offset: 0

Views

Author

Keywords

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(t*i
           b(2*n*(n+1), 2*n+1$2):
    seq(a(n), n=0..20);  # Alois P. Heinz, May 30 2020
  • Mathematica
    a[n_] := SeriesCoefficient[QBinomial[2(2n+1), 2n+1, q], {q, 0, 2n(n+1)}];
    Table[a[n], {n, 0, 17}] (* Jean-François Alcover, Aug 19 2019 *)

Formula

a(n) = coefficient of q^((m^2-1)/2) = q(2*n*(n+1)) in the q-binomial coefficient [2*m, m] = [2*(2*n+1), 2*n+1], where m = 2*n+1. [Corrected by Petros Hadjicostas, May 30 2020]
a(n) is the number of partitions of 2*n*(n+1) into at most 2*n+1 parts each no bigger than 2*n+1. - Petros Hadjicostas, May 30 2020

Extensions

a(18)-a(20) from Alois P. Heinz, May 30 2020

A007044 Left diagonal of partition triangle A047812.

Original entry on oeis.org

0, 0, 1, 7, 20, 48, 100, 194, 352, 615, 1034, 1693, 2705, 4239, 6522, 9889, 14786, 21844, 31913, 46165, 66162, 94035, 132600, 185637, 258128, 356674, 489906, 669173, 909212, 1229217, 1653993, 2215597, 2955192, 3925659, 5194520, 6847963, 8995524, 11776227
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b(2*n+2, n$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, May 31 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    a[n_] := b[2n+2, n, n];
    Array[a, 50] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=1, 40, print1(T(n, 2), ",")) \\ Petros Hadjicostas, May 31 2020

Extensions

Name edited by Petros Hadjicostas, May 31 2020

A007045 Second (lower) diagonal of partition triangle A047812.

Original entry on oeis.org

0, 1, 5, 20, 51, 112, 221, 411, 720, 1221, 2003, 3206, 5021, 7728, 11698, 17472, 25766, 37580, 54254, 77617, 110087, 154942, 216488, 300456, 414365, 568113, 774571, 1050572, 1417868, 1904641, 2547152, 3392042, 4498948, 5944158, 7824703, 10263932, 13418043, 17484554
Offset: 2

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b((n-3)*(n+1), n$2):
    seq(a(n), n=2..40);  # Alois P. Heinz, May 31 2020
  • Mathematica
    s[n_] := s[n] = Series[Product[(1 - q^(2*n - k))/(1 - q^(k + 1)), {k, 0, n - 1}], {q, 0, n^2}]; t[n_, k_] := SeriesCoefficient[s[n], k*(n + 1)]; A007045 = Join[{0}, Table[t[n + 3, n], {n, 0, 25}] ] (* Jean-François Alcover, Apr 25 2012 *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=3, 33, print1(T(n, n-3), ", ")) \\ Petros Hadjicostas, May 31 2020

A081719 Triangle T(n,k) read by rows, related to Faà di Bruno's formula (n >= 0 and 0 <= k <= n).

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 5, 1, 0, 1, 9, 14, 7, 1, 0, 1, 13, 32, 27, 9, 1, 0, 1, 20, 66, 80, 44, 11, 1, 0, 1, 28, 123, 203, 160, 65, 13, 1, 0, 1, 40, 222, 465, 486, 280, 90, 15, 1, 0, 1, 54, 377, 985, 1305, 990, 448, 119, 17, 1, 0, 1, 75, 630, 1978, 3203, 3051, 1807, 672, 152, 19, 1
Offset: 0

Views

Author

N. J. A. Sloane, Apr 05 2003

Keywords

Comments

From Petros Hadjicostas, May 30 2020: (Start)
We may prove Philippe Deléham's formula by induction on n. Let P(n,k) = A008284(n,k) and b(n) = A039809(n). For n = 0, Sum_{k=0..0} T(0,k) = 1 = b(1). Let n >= 1, and assume his formula is true for all s < n, i.e., Sum_{k=0..s} T(s,k) = b(s+1).
Then Sum_{k=0..n} T(n, k) = Sum_{k=1..n} T(n,k) = Sum_{k=1..n} Sum_{s=k-1..n-1} P(n+1, s+1)*T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{k=1..s+1} T(s, k-1) = Sum_{s=0..n-1} P(n+1, s+1) Sum_{m=0..s} T(s,m) = Sum_{s=0..n-1} P(n+1, s+1)*b(s+1) = Sum_{r=1..n} P(n+1, r)*b(r) = b(n+1) (by the definition of b = A039809). (End)

Examples

			Triangle T(n,k) (with rows n >= 0 and columns k = 0..n) begins:
  1;
  0, 1;
  0, 1,  1;
  0, 1,  3,  1;
  0, 1,  5,  5,  1;
  0, 1,  9, 14,  7,  1;
  0, 1, 13, 32, 27,  9,  1;
  0, 1, 20, 66, 80, 44, 11, 1;
  ...
		

Crossrefs

Programs

  • Mathematica
    (* b = A008284 *)
    b[n_, k_]:= b[n, k]= If[n>0 && k>0, b[n-1, k-1] + b[n-k, k], Boole[n==0 && k==0]];
    T[n_, k_]:= T[n, k]= If[n==0 && k==0, 1, If[k==0, 0,  Sum[T[j, k-1]*b[n+1, j+1], {j, k-1, n-1}] ]];
    Table[T[n, k], {n, 0, 12}, {k, 0, n}]//Flatten (* G. C. Greubel, May 31 2020 *)
  • PARI
    P(n, k)=#partitions(n-k, k); /* A008284 */
    tabl(nn) = {A = matrix(nn, nn, n, k, 0); A[1,1] = 1; for(n=2, nn, for(k=2, n, A[n,k] = sum(s=k-2, n-2, P(n, s+1)*A[s+1,k-1])));
    for (n=1, nn, for (k=1, n, print1(A[n, k], ", "); ); print(); ); }  \\ Petros Hadjicostas, May 29 2020

Formula

There is a recurrence involving the partition function A008284.
Sum_{k=0..n} T(n,k) = A039809(n+1). - Philippe Deléham, Sep 30 2006
From Petros Hadjicostas, May 30 2020: (Start)
T(n, k) = Sum_{s=k-1..n-1} A008284(n+1, s+1)*T(s, k-1) for 1 <= k <= n with T(0,0) = 1 and T(n,0) = 0 for n >= 1.
T(n, k=2) = A007042(n) = A047812(n,2). (End)

Extensions

More terms from Emeric Deutsch, Feb 28 2005

A119271 Triangle: number of exactly (m-1)-dimensional partitions of n, for n >= 1, m >= 0.

Original entry on oeis.org

1, 0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 5, 6, 1, 0, 1, 9, 18, 10, 1, 0, 1, 13, 44, 49, 15, 1, 0, 1, 20, 97, 172, 110, 21, 1, 0, 1, 28, 195, 512, 550, 216, 28, 1, 0, 1, 40, 377, 1370, 2195, 1486, 385, 36, 1, 0, 1, 54, 694, 3396, 7603, 7886, 3514, 638, 45, 1, 0, 1, 75, 1251, 7968
Offset: 1

Views

Author

Keywords

Comments

The partition of 1 is considered to be dimension -1 by convention.

Examples

			Table starts:
  1,
  0,1,
  0,1,1,
  0,1,3,1,
  0,1,5,6,1,
  ...
		

Crossrefs

Cf. A119270, A096806. Column 1 is A007042.

Formula

a(n,m) = A096806(n,m-1)-a(n,m-1). Binomial transform of n-th row lists the (m-1) dimensional partitions of n.

A128567 Matrix square, T(n,k), of Parker's partition triangle A047812, read by rows (n >= 1 and 0 <= k <= n-1).

Original entry on oeis.org

1, 2, 1, 5, 6, 1, 14, 31, 14, 1, 42, 133, 117, 22, 1, 132, 587, 813, 300, 36, 1, 429, 2531, 4871, 2896, 692, 52, 1, 1430, 10950, 27743, 23961, 9206, 1430, 76, 1, 4862, 47185, 151208, 175734, 96418, 24598, 2798, 104, 1, 16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1
Offset: 1

Views

Author

Paul D. Hanna, Mar 12 2007

Keywords

Comments

Column 0 is the Catalan numbers (A000108). Parker's partition triangle may be defined as: A047812(n,k) = [q^(n*k+k)] in the central q-binomial coefficient [2*n,n] for n >= 1 and 0 <= k <= n-1. [Edited by Petros Hadjicostas, May 30 2020]

Examples

			Triangle T(n,k) (with rows n >= 1 and columns k = 0..n-1) begins:
      1;
      2,      1;
      5,      6,      1;
     14,     31,     14,       1;
     42,    133,    117,      22,      1;
    132,    587,    813,     300,     36,      1;
    429,   2531,   4871,    2896,    692,     52,     1;
   1430,  10950,  27743,   23961,   9206,   1430,    76,    1;
   4862,  47185, 151208,  175734,  96418,  24598,  2798,  104,   1;
  16796, 203704, 804065, 1200301, 882471, 329426, 62885, 5236, 146, 1;
  ...
		

Crossrefs

Cf. A000108 (column k=0), A047812, A128568 (column k=1), A128569 (column k=2), A128602 (row sums).

Programs

  • PARI
    {T(n, k)=local(M);M=matrix(n+1,n+1,r,c,if(rPetros Hadjicostas, May 31 2020

Formula

T(n,k) = Sum_{s=k..n-1} A047812(n,s)*A047812(s+1,k) for n >= 1 and 0 <= k <= n-1. - Petros Hadjicostas, May 31 2020

Extensions

Name edited and offset changed by Petros Hadjicostas, May 30 2020
Showing 1-10 of 19 results. Next