cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A007042 Left diagonal of partition triangle A047812.

Original entry on oeis.org

0, 1, 3, 5, 9, 13, 20, 28, 40, 54, 75, 99, 133, 174, 229, 295, 383, 488, 625, 790, 1000, 1253, 1573, 1956, 2434, 3008, 3716, 4563, 5602, 6840, 8347, 10141, 12308, 14881, 17975, 21635, 26013, 31183, 37336, 44581, 53172, 63259, 75173, 89132, 105556, 124752
Offset: 1

Views

Author

Keywords

Comments

For n > 2, a(n) is also the number of partitions of n into parts <= n-2: a(n) = A026820(n+1, n-1). - Reinhard Zumkeller, Jan 21 2010
Also, the number of partitions of 2*n in which n-1 is the maximal part; see the Mathematica section. - Clark Kimberling, Mar 13 2012
This is column 2 of the matrix A in Sect. 2.3 of the Govindarajan preprint, cf. references and A096651. - M. F. Hasler, Apr 12 2012

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Julia
    using Nemo
    function A007042List(len)
        R, z = PolynomialRing(ZZ, "z")
        e = eta_qexp(-1, len+2, z)
        [coeff(e, j) - 2 for j in 2:len+1] end
    A007042List(45) |> println # Peter Luschny, May 30 2020
  • Mathematica
    f[n_]:= Length[Select[IntegerPartitions[2 n], First[#]==n-1 &]]; Table[f[n], {n, 1, 24}] (* Clark Kimberling, Mar 13 2012 *)
    a[n_]:= PartitionsP[n+1]-2; Table[a[n], {n,1,50}] (* Jean-François Alcover, Jan 28 2015, after M. F. Hasler *)
  • PARI
    A007042(n)=numbpart(n+1)-2  \\ M. F. Hasler, Apr 12 2012
    

Formula

a(n) = A000041(n+1) - 2. - Vladeta Jovovic, Oct 06 2001

Extensions

More terms from James Sellers
Name edited by Petros Hadjicostas, May 31 2020

A007044 Left diagonal of partition triangle A047812.

Original entry on oeis.org

0, 0, 1, 7, 20, 48, 100, 194, 352, 615, 1034, 1693, 2705, 4239, 6522, 9889, 14786, 21844, 31913, 46165, 66162, 94035, 132600, 185637, 258128, 356674, 489906, 669173, 909212, 1229217, 1653993, 2215597, 2955192, 3925659, 5194520, 6847963, 8995524, 11776227
Offset: 1

Views

Author

Keywords

References

  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b(2*n+2, n$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, May 31 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    a[n_] := b[2n+2, n, n];
    Array[a, 50] (* Jean-François Alcover, Nov 23 2020, after Alois P. Heinz *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=1, 40, print1(T(n, 2), ",")) \\ Petros Hadjicostas, May 31 2020

Extensions

Name edited by Petros Hadjicostas, May 31 2020

A335323 First lower diagonal of Parker's triangle A047812.

Original entry on oeis.org

0, 1, 3, 7, 11, 18, 26, 38, 52, 73, 97, 131, 172, 227, 293, 381, 486, 623, 788, 998, 1251, 1571, 1954, 2432, 3006, 3714, 4561, 5600, 6838, 8345, 10139, 12306, 14879, 17973, 21633, 26011, 31181, 37334, 44579, 53170, 63257, 75171, 89130, 105554, 124750, 147269
Offset: 1

Views

Author

Petros Hadjicostas, May 31 2020

Keywords

Comments

Apparently, this sequence was originally intended to be A7043 (now A007043), but for some reason it was crossed out on p. 4 of the annotated copy of Guy's 1992 preprint.
a(n) is the number of partitions of (n-2)*(n+1) into at most n parts each no bigger than n. Thus, a(n) is the coefficient of q^((n-2)*(n+1)) in the q-binomial coefficient [2*n, n].

Examples

			a(1) = 0 because it does not make sense to talk about the partitions of (1-2)*(1+1) = -2.
a(2) = 1 because we have only the empty partition for (2-2)*(2+1) = 0.
a(3) = 3 because we have the following partitions of (3-2)*(3+1) = 4 into no more than 3 parts each no bigger than 3: 1+3 = 1+1+2 = 2+2.
a(4) = 7 because we have the following partitions of (4-2)*(4+1) = 10 into no more than 4 parts each no bigger than 4: 2+4+4 = 3+3+4 = 1+1+4+4 = 1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
The PARI function partitions((n-2)*(n+1), n, n) can generate these partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b((n-2)*(n+1), n$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, May 31 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    a[n_] := b[(n-2)(n+1), n, n];
    Array[a, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=1, 43, print1(T(n, n-2), ", "))
Showing 1-3 of 3 results.