cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 10 results.

A007060 Number of ways n married couples can sit in a row without any spouses next to each other.

Original entry on oeis.org

1, 0, 8, 240, 13824, 1263360, 168422400, 30865121280, 7445355724800, 2287168006717440, 871804170613555200, 403779880746418176000, 223346806774106790297600, 145427383048755178635264000, 110105698060190464791596236800, 95914116314126658718742347776000, 95252504853751428295192341381120000
Offset: 0

Views

Author

David Roberts Keeney (David.Roberts.Keeney(AT)directory.Reed.edu)

Keywords

Comments

Limit_{n->oo} a(n)/(2n)! = 1/e.
Also the number of (directed) Hamiltonian paths of the n-cocktail party graph. - Eric W. Weisstein, Dec 16 2013
Also the number of ways to label the cells of a 2 X n grid such that no vertically adjacent cells have adjacent labels. - Sela Fried, May 29 2023

Examples

			For n = 2, the a(2) = 8 solutions for the couples {1,2} and {3,4} are {1324, 1423, 2314, 2413, 3142, 3241, 4132, 4231}.
		

Crossrefs

Programs

  • Maple
    seq(add((-1)^i*binomial(n, i)*2^i*(2*n-i)!, i=0..n),n=0..20);
  • Mathematica
    Table[Sum[(-1)^i Binomial[n,i] (2 n - i)! 2^i, {i, 0, n}], {n, 0, 20}]
    Table[(2 n)! Hypergeometric1F1[-n, -2 n, -2], {n, 0, 20}]
  • PARI
    a(n)=sum(k=0, n, binomial(n, k)*(-1)^(n-k)*(n+k)!*2^(n-k)) \\ Charles R Greathouse IV, May 11 2016
    
  • Python
    from sympy import binomial, subfactorial
    def a(n): return sum([(-1)**(n - k)*binomial(n, k)*subfactorial(2*k) for k in range(n + 1)]) # Indranil Ghosh, Apr 28 2017

Formula

a(n) = (Pi*BesselI(n+1/2,1)*(-1)^n+BesselK(n+1/2,1))*exp(-1)*(2/Pi)^(1/2)*2^n*n!. - Mark van Hoeij, Nov 12 2009
a(n) = (-1)^n*2^n*n!*A000806(n), n>0. - Vladeta Jovovic, Nov 19 2009
a(n) = n!*hypergeom([-n, n+1],[],1/2)*(-2)^n. - Mark van Hoeij, Nov 13 2009
a(n) = 2^n * A114938(n). - Toby Gottfried, Nov 22 2010
a(n) = 2*n((2*n-1)*a(n-1) + (2*n-2)*a(n-2)), n > 1. - Aaron Meyerowitz, May 14 2014
From Peter Bala, Mar 06 2015: (Start)
a(n) = Sum_{k = 0..n} (-1)^(n-k)*binomial(n,k)*A000166(2*k).
For n >= 1, Integral_{x = 0..1} (x^2 - 1)^n*exp(x) dx = a(n)*e - A177840(n). Hence lim_{n->oo} A177840(n)/a(n) = e. (End)
a(n) ~ sqrt(Pi) * 2^(2*n+1) * n^(2*n + 1/2) / exp(2*n+1). - Vaclav Kotesovec, Mar 09 2016

Extensions

More terms from Michel ten Voorde, Apr 11 2001

A264607 Degeneracies of entanglement witness eigenstates for spin 3/2 particles.

Original entry on oeis.org

1, 1, 4, 34, 364, 4269, 52844, 679172, 8976188, 121223668, 1665558544, 23207619274, 327167316436, 4657884819670, 66875794530120, 967202289590280, 14077773784645980, 206058395118133932, 3031188276557963312, 44789055557553810152
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2015

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, this sequence, A007043, A272391, A264608, A272392, A272393, A272394, A272395.

Programs

  • Mathematica
    a[n_]:= 2/Pi*4^(2*n)*Integrate[Sqrt[1-t]*(2*t-1)^(2*n)*Sqrt[t]^(2*n-1),{t,0,1}] (* Thomas Curtright, Jun 22 2016 *)
    a[n_]:= c[0, 2 n, 3/2]-c[1, 2 n, 3/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    Table[CatalanNumber[3 n]Hypergeometric2F1[-1-3n,-2n,1/2-3n,1/2],{n,0,20}] (* Benedict W. J. Irwin, Sep 27 2016 *)
  • PARI
    N = 44; S = 3/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016

Formula

a(n) ~ (2*sqrt(10)/25)*4^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-21/(40*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 16 2016
D-finite with recurrence: 3*n*(3*n - 1)*(3*n + 1)*(5*n - 7)*a(n) = 8*(2*n - 1)*(145*n^3 - 338*n^2 + 238*n - 51)*a(n-1) - 128*(n-1)*(2*n - 3)*(2*n - 1)*(5*n - 2)*a(n-2). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(4x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016
a(n) = Catalan(3*n)*2F1(-1-3*n,-2*n;1/2-3*n;1/2). - Benedict W. J. Irwin, Sep 27 2016

Extensions

More terms from Gheorghe Coserea, Apr 28 2016

A264608 Degeneracies of entanglement witness eigenstates for spin 3 particles.

Original entry on oeis.org

1, 0, 1, 1, 7, 31, 175, 981, 5719, 33922, 204687, 1251460, 7737807, 48297536, 303922983, 1926038492, 12281450455, 78741558512, 507301771543, 3282586312161, 21323849229781, 139012437340660, 909161626641121, 5963576112550771, 39223341189188339, 258619428254117476, 1709124801693650075
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2015

Keywords

Examples

			A(x) = 1 + x^2 + x^3 + 7*x^4 + 31*x^5 + 175*x^6 + 981*x^7 + ...
		

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, this sequence, A272392, A272393, A272394, A272395.
Cf. A348210 (column k=3).

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(64t^3-80t^2+24t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
    a[n_]:= c[0, n, 3]-c[1, n, 3]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 3]; mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 26; S = 3;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
    
  • PARI
    seq(N) = {
      my(a = vector(N), s); a[2]=1; a[3]=1; a[4]=7; a[5]=31;
      for (n=6, N, s = ((n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a[n-1] + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a[n-2] - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a[n-3] - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a[n-4]);
        a[n] = s/(3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)));
      concat(1,a);
    };
    seq(26) \\ Gheorghe Coserea, Aug 07 2018

Formula

a(n) ~ (1/8^(3/2))*7^n/(sqrt(Pi)*n^(3/2)) * (1-27/(32*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence 3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)*a(n) = (n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a(n-1) + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a(n-2) - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a(n-3) - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a(n-4). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(7x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
From Gheorghe Coserea, Aug 07 2018: (Start)
G.f. y=A(x) satisfies:
0 = x^3*(x + 1)^4*(49*x^2 - 14*x - 27)^2*y^8 + 2*x^3*(x + 1)^3*(35*x + 23)*(49*x^2 - 14*x - 27)*y^6 + x^2*(x + 1)^2*(1421*x^3 + 1652*x^2 + 393*x - 54)*y^4 + x*(x + 1)*(147*x^3 + 175*x^2 + 51*x - 1)*y^2 + x*(2*x + 1)^2.
0 = x^2*(x + 1)*(7*x - 1)*(7*x + 1)*(49*x^2 - 70*x + 5)*(49*x^2 - 14*x - 27)*y''' + x*(1058841*x^7 - 1092455*x^6 - 1212505*x^5 + 627347*x^4 + 222999*x^3 - 6657*x^2 - 5015*x + 405)*y'' + 2*(1058841*x^7 - 1428595*x^6 - 725102*x^5 + 224322*x^4 + 24157*x^3 + 6909*x^2 - 720*x + 60)*y' + 14*x*(50421*x^5 - 84035*x^4 - 19894*x^3 - 2058*x^2 + 665*x - 75)*y.
(End)

Extensions

More terms from Gheorghe Coserea, Apr 28 2016

A272393 Degeneracies of entanglement witness eigenstates for n spin 4 irreducible representations.

Original entry on oeis.org

1, 0, 1, 1, 9, 51, 369, 2661, 19929, 151936, 1178289, 9259812, 73593729, 590475744, 4776464121, 38912018796, 318971849625, 2629040965776, 21774894337449, 181136924953317, 1512731101731499, 12678230972826340, 106600213003114719
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, this sequence, A272394, A272395.
Cf. A348210 (column k=4).

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*((4t-1)(4t(4t-3)^2-1))^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, n, 4]-c[1, n, 4]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 4]
    mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 26; S = 4;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) ~ (3/40)^(3/2)*9^n/(sqrt(Pi)*n^(3/2)) * (1-129/(160*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence 8*n*(2*n - 5)*(2*n - 3)*(2*n - 1)*(4*n - 1)*(4*n + 1)*(5*n - 17)*(5*n - 12)*(5*n - 8)*(5*n - 7)*a(n) = (n-1)*(2*n - 5)*(2*n - 3)*(5*n - 17)*(5*n - 12)*(5*n - 3)*(5*n - 2)*(2101*n^3 - 6506*n^2 + 6608*n - 2200)*a(n-1) + 9*(n-1)*(2*n - 5)*(2*n - 1)*(4*n - 1)*(5*n - 17)*(5*n - 8)*(5*n - 7)*(385*n^3 - 1659*n^2 + 2008*n - 492)*a(n-2) - 81*(n-2)*(n-1)*(2*n - 3)*(5*n - 12)*(5*n - 3)*(5*n - 2)*(1020*n^4 - 8088*n^3 + 21761*n^2 - 22557*n + 7264)*a(n-3) - 729*(n-3)*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(4*n - 1)*(5*n - 17)*(5*n - 8)*(5*n - 7)*(5*n - 2)*a(n-4) + 6561*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(5*n - 12)*(5*n - 7)*(5*n - 3)*(5*n - 2)*a(n-5). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(9x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016

A272391 Degeneracies of entanglement witness eigenstates for 2n spin 5/2 irreducible representations.

Original entry on oeis.org

1, 1, 6, 111, 2666, 70146, 1949156, 56267133, 1670963202, 50720602314, 1566629938776, 49080774275121, 1555873464248076, 49814409137161480, 1608523756282054800, 52323002586904505427, 1712956041168844662002
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, this sequence, A264608, A272392, A272393, A272394, A272395.

Programs

  • Mathematica
    a[n_] := 2/Pi * 2^(2 * n) * Integrate[Sqrt[1 - t] * ((4 * t - 1)(4 * t - 3))^(2 * n) * Sqrt[t]^(2 * n - 1), {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
    a[n_] := c[0, 2 n, 5/2] - c[1, 2 n, 5/2]; c[j_, n_, s_]:= Sum[(-1)^k * Binomial[n, k] * Binomial[j - (2 * s + 1) * k + n + n * s - 1, j - (2 * s + 1) * k + n * s], {k, 0, Min[n, Floor[(j + n * s)/(2 * s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 34; S = 5/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) ~ (6*sqrt(210)/1225)*6^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-123/(280n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
Recurrence: 5*n*(5*n - 8)*(5*n - 3)*(5*n - 2)*(5*n - 1)*(5*n + 1)*(7*n - 16)*(7*n - 10)*(7*n - 9)*a(n) = 6*(2*n - 1)*(5*n - 8)*(7*n - 16)*(499359*n^6 - 2314137*n^5 + 4264709*n^4 - 3984323*n^3 + 1983172*n^2 - 496780*n + 48720)*a(n-1) - 864*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 2)*(25480*n^5 - 160398*n^4 + 375142*n^3 - 401079*n^2 + 192819*n - 33500)*a(n-2) + 31104*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(5*n - 3)*(7*n - 9)*(7*n - 3)*(7*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(6x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016

A272392 Degeneracies of entanglement witness eigenstates for 2n spin 7/2 irreducible representations.

Original entry on oeis.org

1, 1, 8, 260, 11096, 518498, 25593128, 1312660700, 69270071480, 3736677346685, 205125498479384, 11421904528488264, 643564228586076344, 36624864117451994600, 2102142593641513473240, 121548403269918189484872, 7073453049221266117909752, 413976401197504361048673896
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, this sequence, A272393, A272394, A272395.

Programs

  • Mathematica
    a[n_]:= c[0, 2*n, 7/2]-c[1, 2*n, 7/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 44; S = 7/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016

Formula

a(n) ~ (2*sqrt(42)/441)*8^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-23/(56*n)+O(1/n^2)). - Thomas Curtright and Cosmas Zachos, Jun 17 2016, updated Jul 26 2016
Recurrence: 7*n*(3*n - 7)*(3*n - 4)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(7*n - 5)*(7*n - 4)*(7*n - 3)*(7*n - 2)*(7*n - 1)*(7*n + 1)*(9*n - 29)*(9*n - 20)*(9*n - 13)*(9*n - 11)*a(n) = 32*(2*n - 1)*(3*n - 7)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(9*n - 29)*(9*n - 20)*(218437803*n^9 - 1510747767*n^8 + 4498401903*n^7 - 7551222032*n^6 + 7855986297*n^5 - 5239178603*n^4 + 2233354977*n^3 - 584916638*n^2 + 85090380*n - 5216400)*a(n-1) - 6144*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 19)*(9*n - 29)*(9*n - 2)*(460622295*n^10 - 5800755303*n^9 + 31804940376*n^8 - 99676215732*n^7 + 197077947989*n^6 - 255958437117*n^5 + 220361564054*n^4 - 123775781978*n^3 + 43301190686*n^2 - 8505466270*n + 711711000)*a(n-2) + 262144*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 1)*(7*n - 5)*(9*n - 11)*(9*n - 2)*(2988657*n^7 - 36693972*n^6 + 183168228*n^5 - 477680566*n^4 + 695101884*n^3 - 556549424*n^2 + 223584828*n - 34734735)*a(n-3) - 16777216*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(3*n - 1)*(7*n - 12)*(7*n - 5)*(7*n - 4)*(9*n - 20)*(9*n - 11)*(9*n - 4)*(9*n - 2)*a(n-4). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(8x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016

A272394 Degeneracies of entanglement witness eigenstates for 2n spin 9/2 irreducible representations.

Original entry on oeis.org

1, 1, 10, 505, 33670, 2457190, 189442252, 15177798415, 1251216059950, 105443928375598, 9043123211156440, 786701771691580227, 69253844083218535300, 6157639918607211895000, 552193624489443516667344, 49885368826043082235592687
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, this sequence, A272395.

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(4t)^n*((16t^2-20t+5)((4t-1)^2-4t))^(2n), {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, 2 n, 9/2]-c[1, 2 n, 9/2]
    c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 33; S = 9/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) = (1/Pi)*int((sin(10x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (2*sqrt(66)/1089)*10^(2n)/(sqrt(Pi)*(2n)^(3/2))(1-35/(88n) + O(1/n^2)). - Thomas Curtright, Jul 26 2016

A272395 Degeneracies of entanglement witness eigenstates for n spin 5 irreducible representations.

Original entry on oeis.org

1, 0, 1, 1, 11, 76, 671, 5916, 54131, 504316, 4779291, 45898975, 445798221, 4371237794, 43213522209, 430241859971, 4310236148075, 43417944574136, 439495074016427, 4468208369691396, 45605656313488271, 467140985042718910
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Comments

The Mathematica formula for a(n) as the difference of two generalized binomial coefficients is adapted from the Appendix of the Mendonça link. - Thomas Curtright, Jul 27 2016

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, A272394, this sequence.

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(1024t^5-2304t^4+1792t^3-560t^2 +60t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, n, 5]-c[1, n, 5]
    c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Floor[(j + n*s)/(2*s + 1)]}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 5]
    mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 22; S = 5;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
    
  • PARI
    c(j, n) = sum(k=0, min((j + 5*n)\11, n), (-1)^k*binomial(n, k)*binomial(j - 11*k + n + 5*n - 1, j - 11*k + n*5))
    a(n)=c(0, n)-c(1, n) \\ Charles R Greathouse IV, Jul 28 2016; adapted from Curtright's Mathematica code

Formula

a(n)=(1/Pi)*int((sin(11x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (1/20)^(3/2)*11^n/(sqrt(Pi)*n^(3/2))(1-63/(80n)+O(1/n^2)). - Thomas Curtright, Jul 26 2016

A348210 Varma's Kosta numbers of semi-standard tableaux: array A(n>=2, k>=0) read by rising antidiagonals.

Original entry on oeis.org

0, 1, 0, 1, 1, 0, 1, 3, 1, 0, 1, 6, 5, 1, 0, 1, 15, 16, 7, 1, 0, 1, 36, 65, 31, 9, 1, 0, 1, 91, 260, 175, 51, 11, 1, 0, 1, 232, 1085, 981, 369, 76, 13, 1, 0, 1, 603, 4600, 5719, 2661, 671, 106, 15, 1, 0, 1, 1585, 19845, 33922, 19929, 5916, 1105, 141, 17, 1, 0, 1, 4213, 86725, 204687, 151936, 54131, 11516, 1695, 181, 19, 1, 0
Offset: 2

Views

Author

R. J. Mathar, Oct 07 2021

Keywords

Comments

(More characteristic NAME desired.)
Each row is a polynomial in k, which implies that the inverse binomial transformation of each row is a finite sequence and that the row can be represented by a rational generating function (A348211).

Examples

			The array starts in row n=2 with columns k>=0 as:
  0   0    0    0     0     0      0      0 ...
  1   1    1    1     1     1      1      1 ...
  1   3    5    7     9    11     13     15 ...
  1   6   16   31    51    76    106    141 ...
  1  15   65  175   369   671   1105   1695 ...
  1  36  260  981  2661  5916  11516  20385 ...
  1  91 1085 5719 19929 54131 124501 254255 ...
Antidiagonal rows begin as:
  0;
  1,   0;
  1,   1,    0;
  1,   3,    1,    0;
  1,   6,    5,    1,    0;
  1,  15,   16,    7,    1,    0;
  1,  36,   65,   31,    9,    1,   0;
  1,  91,  260,  175,   51,   11,   1,   0;
  1, 232, 1085,  981,  369,   76,  13,   1,  0;
  1, 603, 4600, 5719, 2661,  671, 106,  15,  1,  0;
		

Crossrefs

Cf. A005043 (column k=1), A007043 (k=2), A264608 (k=3), A272393 (k=4), A005408 (row n=4), A005891 (n=5), A005917 (n=6), A348211 (condensed g.f.)

Programs

  • Magma
    A:= func< n,k | (&+[(-1)^(j+1)*Binomial(n,j)*Binomial((n-2*j)*k+n-j-2,n-3)/2 : j in [0..Floor((n-1)/2)]]) >;
    A348210:= func< n,k | A(n-k,k) >;
    [A348210(n,k): k in [0..n-2], n in [2..13]]; // G. C. Greubel, Feb 28 2024
    
  • Maple
    A348210 := proc(n,k)
        local a,j ;
        a := 0 ;
        for j from 0 to floor((n-1)/2) do
                a := a+ (-1)^j *binomial(n,j) *binomial( (n-2*j)*k+n-j-2,n-3) ;
        end do:
        -a/2 ;
    end proc:
    seq( seq( A348210(d-k,k),k=0..d-2),d=2..12) ;
  • Mathematica
    A[n_, k_] := (-1/2)*Sum[(-1)^j*Binomial[n, j]*Binomial[(n - 2*j)*k + n - j - 2, n - 3], {j, 0, Floor[(n - 1)/2]}];
    Table[A[n - k, k], {n, 2, 13}, {k, 0, n - 2}] // Flatten (* Jean-François Alcover, Mar 06 2023 *)
  • SageMath
    def A(n,k): return sum( (-1)^(j+1)*binomial(n,j)*binomial((n-2*j)*k+n-j-2,n-3) for j in range(1+(n-1)//2) )/2
    def A348210(n,k): return A(n-k, k)
    flatten([[A348210(n,k) for k in range(n-1)] for n in range(2,13)]) # G. C. Greubel, Feb 28 2024

Formula

A(n,k) = (-1/2)*Sum_{j=0..floor((n-1)/2)} (-1)^j *binomial(n,j) *binomial((n-2*j)*k+n-j-2,n-3).
A(7,k) = 1 + 7*k*(k+1)*(11*k^2+11*k+8)/12.
A(8,k) = (2*k+1)*(4*k^2+6*k+3)*(4*k^2+2*k+1)/3.
A(9,k) = 1 + k*(k+1)*(289*k^4+578*k^3+581*k^2+292*k+108)/16.

A335323 First lower diagonal of Parker's triangle A047812.

Original entry on oeis.org

0, 1, 3, 7, 11, 18, 26, 38, 52, 73, 97, 131, 172, 227, 293, 381, 486, 623, 788, 998, 1251, 1571, 1954, 2432, 3006, 3714, 4561, 5600, 6838, 8345, 10139, 12306, 14879, 17973, 21633, 26011, 31181, 37334, 44579, 53170, 63257, 75171, 89130, 105554, 124750, 147269
Offset: 1

Views

Author

Petros Hadjicostas, May 31 2020

Keywords

Comments

Apparently, this sequence was originally intended to be A7043 (now A007043), but for some reason it was crossed out on p. 4 of the annotated copy of Guy's 1992 preprint.
a(n) is the number of partitions of (n-2)*(n+1) into at most n parts each no bigger than n. Thus, a(n) is the coefficient of q^((n-2)*(n+1)) in the q-binomial coefficient [2*n, n].

Examples

			a(1) = 0 because it does not make sense to talk about the partitions of (1-2)*(1+1) = -2.
a(2) = 1 because we have only the empty partition for (2-2)*(2+1) = 0.
a(3) = 3 because we have the following partitions of (3-2)*(3+1) = 4 into no more than 3 parts each no bigger than 3: 1+3 = 1+1+2 = 2+2.
a(4) = 7 because we have the following partitions of (4-2)*(4+1) = 10 into no more than 4 parts each no bigger than 4: 2+4+4 = 3+3+4 = 1+1+4+4 = 1+2+3+4 = 1+3+3+3 = 2+2+2+4 = 2+2+3+3.
The PARI function partitions((n-2)*(n+1), n, n) can generate these partitions.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, 1, `if`(n<0
          or t*i b((n-2)*(n+1), n$2):
    seq(a(n), n=1..50);  # Alois P. Heinz, May 31 2020
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, 1, If[n < 0 || t i < n, 0, b[n, i - 1, t] + b[n - i, Min[i, n - i], t - 1]]];
    a[n_] := b[(n-2)(n+1), n, n];
    Array[a, 50] (* Jean-François Alcover, Nov 27 2020, after Alois P. Heinz *)
  • PARI
    T(n, k) = polcoeff(prod(j=0, n-1, (1-q^(2*n-j))/(1-q^(j+1)) ), k*(n+1) );
    for(n=1, 43, print1(T(n, n-2), ", "))
Showing 1-10 of 10 results.