A062316 Neither the sum or difference of 2 squares.
6, 14, 22, 30, 38, 42, 46, 54, 62, 66, 70, 78, 86, 94, 102, 110, 114, 118, 126, 134, 138, 142, 150, 154, 158, 166, 174, 182, 186, 190, 198, 206, 210, 214, 222, 230, 238, 246, 254, 258, 262, 266, 270, 278, 282, 286, 294, 302, 310, 318, 322, 326, 330, 334, 342, 350, 354, 358
Offset: 1
Keywords
Examples
From _Jean-Christophe Hervé_, Oct 24 2015: (Start) 6, 14, 22, 30, 38, 46, ... are in the sequence because they equal 6 (mod 8). 42 = 2*3*7, 66 = 2*3*11, 114 = 2*7*11 are also in the sequence: of the form 2*(4n+1) with 4n+1 not the sum of 2 squares. (End)
Links
- Jean-Christophe Hervé, Table of n, a(n) for n = 1..2507
Crossrefs
Programs
-
Maple
N:= 1000: # to get all terms <= N S:= {seq(4*i+2,i=0..floor((N-2)/4))} minus {seq(seq(x^2 + y^2, y = x .. floor(sqrt(N-x^2)),2),x=1..floor(sqrt(N)))}: sort(convert(S,list)); # Robert Israel, Oct 25 2015
-
Mathematica
Select[Range@ 360, SquaresR[2, #] == 0 && Mod[#, 4] == 2 &] (* Michael De Vlieger, Oct 26 2015, after Harvey P. Dale at A022544 *)
Formula
a(n) == 2 (mod 4). Subsequence of A016825 (non-differences of squares). All first differences are either 4 or 8, each of which occurs infinitely often. - David W. Wilson, Mar 09 2005
Lim_{n->inf} a(n)/n = 4.
Extensions
More terms from David W. Wilson, Feb 11 2003
Comments