A090542 Incorrect version of A060462.
1, 3, 5, 7, 8, 11, 13, 14, 15
Offset: 1
This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
[n-1: n in [2..120] | not IsPrime(n)]; // Vincenzo Librandi, Jun 09 2015
Select[Range[4, 96], CompositeQ] - 1 (* Michael De Vlieger, Dec 10 2020 *)
for(n=2,100,if(!isprime(n),print1(n-1,", "))) \\ Derek Orr, Jun 08 2015
from sympy import composite def A072668(n): return composite(n)-1 # Chai Wah Wu, Aug 02 2024
Select[Range[120], IntegerQ[ #!/(# + 1)^2] &]
{ n=0; f=1; for (a=1, 2588, f*=a; if (f%(a + 1)^2 == 0, write("b061743.txt", n++, " ", a)) ) } \\ Harry J. Smith, Jul 27 2009
isok(k) = !(k! % (k+1)^2); \\ Michel Marcus, Jul 01 2018
from sympy import primepi def A061743(n): def f(x): return int(n+2+primepi(x+1)+primepi(x+1>>1)) m, k = n, f(n) while m != k: m, k = k, f(k) return m # Chai Wah Wu, Oct 17 2024
a(2) = A125314(2) = 7.
q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0): select(q, [$1..200])[]; # Alois P. Heinz, May 09 2020
Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ Michel Marcus, May 09 2020
a(2) = A125314(4) = 31.
k = s = 1; p = 1; lst = {}; While[k < 1000, If[ Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^4; p = p*k^4]; lst (* Robert G. Wilson v, Nov 02 2009 *) Module[{nn=1000,c},c=Range[nn]^4;Select[Range[nn],Divisible[Times@@ Take[ c,#], Total[Take[c,#]]]&]] (* Harvey P. Dale, Dec 18 2013 *)
a(2) = A125314(5) = 13.
k = s = 1; p = 1; lst = {}; While[k < 100000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^5; p = p*k^5]; lst (* G. C. Greubel, May 18 2016 *) Module[{nn=1000,i5},i5=Range[nn]^5;Position[Table[Times@@Take[i5,n]/Total[Take[i5,n]],{n,nn}],?IntegerQ]]//Flatten (* _Harvey P. Dale, Jan 18 2025 *)
a(2) = A125314(9) = 1441.
select(x-> denom(x)=1, [k!/(k*(k+1)/2)$k=1..30])[]; # Alois P. Heinz, Dec 11 2020
Select[Table[(n - 1)!/((n (n - 1))/2), {n, 2, 50}], IntegerQ[#] &] (* Geoffrey Critzer, May 02 2015 *)
for(n=1,50, r=2*(n-1)!/(n+1); if(denominator(r)==1, print1(r,",")))
a(2) = A125314(6) = 1556.
k = s = 1; p = 1; lst = {}; While[k < 5000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^6; p = p*k^6]; lst (* G. C. Greubel, May 18 2016 *)
a(2) = A125314(7) = 733.
With[{c=Range[40000]^7},Flatten[Position[#[[1]]/#[[2]]&/@Thread[ {Rest[ FoldList[ Times,1,c]],Accumulate[c]}],?IntegerQ]]] (* _Harvey P. Dale, Nov 16 2014 *)
Comments