cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 17 results. Next

A090542 Incorrect version of A060462.

Original entry on oeis.org

1, 3, 5, 7, 8, 11, 13, 14, 15
Offset: 1

Views

Author

Keywords

A072668 Numbers one less than composite numbers.

Original entry on oeis.org

3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94, 95
Offset: 1

Views

Author

Henry Bottomley, Apr 11 2001

Keywords

Comments

Complement of A006093 (primes minus 1).
Numbers which can be written as i*j+i+j, 0A072670(a(n))>0 for n>1.
a(n)! is divisible by a(n)*(a(n)+1)/2, see A060462.

Crossrefs

Programs

  • Magma
    [n-1: n in [2..120] | not IsPrime(n)]; // Vincenzo Librandi, Jun 09 2015
    
  • Mathematica
    Select[Range[4, 96], CompositeQ] - 1 (* Michael De Vlieger, Dec 10 2020 *)
  • PARI
    for(n=2,100,if(!isprime(n),print1(n-1,", "))) \\ Derek Orr, Jun 08 2015
    
  • Python
    from sympy import composite
    def A072668(n): return composite(n)-1 # Chai Wah Wu, Aug 02 2024

Formula

a(n) = A002808(n) - 1.
a(n) = 2*A002808(n) - A079696(n). - Juri-Stepan Gerasimov, Oct 22 2009
a(n) = A060462(n).

A061743 Numbers k such that k! is divisible by (k+1)^2.

Original entry on oeis.org

11, 14, 15, 17, 19, 20, 23, 24, 26, 27, 29, 31, 32, 34, 35, 38, 39, 41, 43, 44, 47, 48, 49, 50, 51, 53, 54, 55, 56, 59, 62, 63, 64, 65, 67, 68, 69, 71, 74, 75, 76, 77, 79, 80, 83, 84, 86, 87, 89, 90, 91, 92, 94, 95, 97, 98, 99, 101, 103, 104, 107, 109, 110, 111, 113, 114
Offset: 1

Views

Author

Robert G. Wilson v, Jun 21 2001

Keywords

Crossrefs

Programs

  • Mathematica
    Select[Range[120], IntegerQ[ #!/(# + 1)^2] &]
  • PARI
    { n=0; f=1; for (a=1, 2588, f*=a; if (f%(a + 1)^2 == 0, write("b061743.txt", n++, " ", a)) ) } \\ Harry J. Smith, Jul 27 2009
    
  • PARI
    isok(k) = !(k! % (k+1)^2); \\ Michel Marcus, Jul 01 2018
    
  • Python
    from sympy import primepi
    def A061743(n):
        def f(x): return int(n+2+primepi(x+1)+primepi(x+1>>1))
        m, k = n, f(n)
        while m != k: m, k = k, f(k)
        return m # Chai Wah Wu, Oct 17 2024

Formula

a(n) = A264828(n+3)-1. Complement of {A178156} - 1. - Chai Wah Wu, Oct 17 2024

A166602 Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.

Original entry on oeis.org

1, 7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Comments

Product_{i=1..k} i^2 = (k!)^2 and Sum_{i=1..k} i^2 = k*(k+1)*(2*k+1)/6. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

Examples

			a(2) = A125314(2) = 7.
		

Crossrefs

Programs

  • Maple
    q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0):
    select(q, [$1..200])[];  # Alois P. Heinz, May 09 2020
  • Mathematica
    Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ Michel Marcus, May 09 2020

Extensions

Terms below 5000 by J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
More terms copied from the b-file by R. J. Mathar, Feb 14 2010

A166604 Numbers k such that Sum_{i=1..k} i^4 divides Product_{i=1..k} i^4.

Original entry on oeis.org

1, 31, 59, 94, 104, 122, 133, 181, 206, 223, 244, 248, 283, 298, 318, 342, 356, 401, 406, 421, 422, 439, 444, 449, 451, 469, 479, 493, 496, 507, 528, 532, 536, 541, 555, 597, 631, 637, 643, 668, 701, 706, 712, 717, 721, 722, 754, 762, 795, 797, 801, 815, 842
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(4) = 31.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 1000, If[ Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^4; p = p*k^4]; lst (* Robert G. Wilson v, Nov 02 2009 *)
    Module[{nn=1000,c},c=Range[nn]^4;Select[Range[nn],Divisible[Times@@ Take[ c,#], Total[Take[c,#]]]&]] (* Harvey P. Dale, Dec 18 2013 *)

Extensions

a(15)-a(53) from Robert G. Wilson v, Nov 02 2009

A166605 Numbers k such that Sum_{i=1..k} i^5 divides Product_{i=1..k} i^5.

Original entry on oeis.org

1, 13, 64, 95, 111, 118, 123, 133, 134, 140, 151, 177, 199, 217, 229, 242, 255, 264, 274, 281, 302, 305, 325, 333, 338, 354, 359, 365, 376, 394, 411, 414, 431, 433, 440, 472, 475, 477, 489, 514, 525, 528, 529, 537, 547, 569, 574, 583, 584, 585, 589, 594, 615
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(5) = 13.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 100000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^5; p = p*k^5]; lst  (* G. C. Greubel, May 18 2016 *)
    Module[{nn=1000,i5},i5=Range[nn]^5;Position[Table[Times@@Take[i5,n]/Total[Take[i5,n]],{n,nn}],?IntegerQ]]//Flatten (* _Harvey P. Dale, Jan 18 2025 *)

Extensions

More terms from Max Alekseyev, Sep 29 2010

A166609 Numbers k such that Sum_{i=1..k} i^9 divides Product_{i=1..k} i^9.

Original entry on oeis.org

1, 1441, 1715, 11706, 16741, 18435, 23793, 29927, 32071, 33932, 45768, 45831, 47103, 47215, 48257, 55743, 56007, 61976, 62773, 64841, 68561, 70853, 70880, 81624, 83526, 86243, 87529, 88162, 91054, 91395, 92288, 92933, 94211, 98982
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(9) = 1441.
		

Crossrefs

Extensions

More terms from Max Alekseyev, Sep 30 2010

A108552 Integer values of (1*2*...*k)/(1+2+...+k) = k!/T(k) = A000142(k)/A000217(k), k>=1.

Original entry on oeis.org

1, 1, 8, 180, 1120, 8064, 604800, 68428800, 830269440, 10897286400, 2324754432000, 640237370572800, 11585247657984000, 221172909834240000, 93666727314800640000, 2068161339110798131200, 47726800133326110720000, 1148978521728221184000000, 28806532937614688256000000
Offset: 1

Views

Author

Rick L. Shepherd, Jun 09 2005

Keywords

Comments

A000142(n)/A000217(n) = n!/(n*(n+1)/2) = 2*(n-1)!/(n+1) is an integer iff n = 1 or n + 1 is composite; i.e., iff n is a term of A060462.

Crossrefs

Cf. A060462 (corresponding k), A000142 (factorials), A000217 (triangular numbers).

Programs

  • Maple
    select(x-> denom(x)=1, [k!/(k*(k+1)/2)$k=1..30])[];  # Alois P. Heinz, Dec 11 2020
  • Mathematica
    Select[Table[(n - 1)!/((n (n - 1))/2), {n, 2, 50}], IntegerQ[#] &] (* Geoffrey Critzer, May 02 2015 *)
  • PARI
    for(n=1,50, r=2*(n-1)!/(n+1); if(denominator(r)==1, print1(r,",")))

Formula

a(m) = 2*(A060462(m)-1)!/(A060462(m)+1) = A000142(A060462(m))/A000217(A060462(m)).

Extensions

Offset corrected by Alois P. Heinz, Dec 11 2020

A166606 Numbers k such that Sum_{i=1..k} i^6 divides Product_{i=1..k} i^6.

Original entry on oeis.org

1, 1556, 1640, 3907, 5642, 6205, 7238, 8311, 10350, 11551, 12499, 13371, 13812, 17524, 17589, 18162, 18790, 21569, 21573, 22381, 22544, 23809, 24312, 24416, 24598, 24629, 25247, 25463, 26093, 26583, 26829, 27091, 27098, 28646, 28804
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(6) = 1556.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 5000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^6; p = p*k^6]; lst (* G. C. Greubel, May 18 2016 *)

Extensions

More terms from Max Alekseyev, Sep 30 2010

A166607 Numbers k such that Sum_{i=1..k} i^7 divides Product_{i=1..k} i^7.

Original entry on oeis.org

1, 733, 1637, 2096, 2367, 4231, 5674, 5839, 7585, 8344, 13719, 13753, 14983, 15151, 15197, 15257, 15757, 16595, 17305, 18791, 20701, 21442, 23652, 23738, 24519, 24789, 25474, 25916, 25933, 27474, 27487, 29185, 31455, 32846, 32950, 33421
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(7) = 733.
		

Crossrefs

Programs

  • Mathematica
    With[{c=Range[40000]^7},Flatten[Position[#[[1]]/#[[2]]&/@Thread[ {Rest[ FoldList[ Times,1,c]],Accumulate[c]}],?IntegerQ]]] (* _Harvey P. Dale, Nov 16 2014 *)

Extensions

More terms from Max Alekseyev, Sep 30 2010
Showing 1-10 of 17 results. Next