cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A060462 Integers k such that k! is divisible by k*(k+1)/2.

Original entry on oeis.org

1, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 24, 25, 26, 27, 29, 31, 32, 33, 34, 35, 37, 38, 39, 41, 43, 44, 45, 47, 48, 49, 50, 51, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 65, 67, 68, 69, 71, 73, 74, 75, 76, 77, 79, 80, 81, 83, 84, 85, 86, 87, 89, 90, 91, 92, 93, 94
Offset: 1

Views

Author

Michel ten Voorde, Apr 09 2001

Keywords

Comments

k! / (k-th triangular number) is an integer.
a(n) = A072668(n) for n>0.
From Bernard Schott, Dec 11 2020: (Start)
Numbers k such that Sum_{j=1..k} j divides Product_{j=1..k} j.
k is a term iff k != p-1 with p is an odd prime (see De Koninck & Mercier reference).
The ratios obtained a(n)!/T(a(n)) = A108552(n). (End)

Examples

			5 is a term because 5*4*3*2*1 = 120 is divisible by 5 + 4 + 3 + 2 + 1 = 15.
		

References

  • Jean-Marie De Koninck & Armel Mercier, 1001 Problèmes en Théorie Classique des Nombres, Problème 181 pp. 31 and 163, Ellipses, Paris, 2004.
  • Joseph D. E. Konhauser et al., Which Way Did The Bicycle Go?, Problem 98, pp. 29; 145-146, MAA Washington DC, 1996.

Crossrefs

Programs

  • Maple
    for n from 1 to 300 do if n! mod (n*(n+1)/2) = 0 then printf(`%d,`,n) fi:od:
  • Mathematica
    Select[Range[94], Mod[#!, #*(# + 1)/2] == 0 &] (* Jayanta Basu, Apr 24 2013 *)
  • PARI
    { f=1; t=0; n=-1; for (m=1, 4000, f*=m; t+=m; if (f%t==0, write("b060462.txt", n++, " ", m)); if (n==2000, break); ) } \\ Harry J. Smith, Jul 05 2009
    
  • Python
    from sympy import composite
    def A060462(n): return composite(n-1)-1 if n>1 else 1 # Chai Wah Wu, Aug 02 2024

Extensions

Corrected and extended by Henry Bottomley and James Sellers, Apr 11 2001
Offset corrected by Alois P. Heinz, Dec 11 2020

A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2.

Original entry on oeis.org

1, 3, 125970, 1278362451795, 305565807424800745258151050335, 2099072522743338791053378243660769678400212601239922213271230, 330455532167461882998265688366895823334392289157931734871641555
Offset: 1

Views

Author

Keywords

Comments

Let prime(i) denote the i-th prime (A000040). Let F(m) = (Product_{i=1..m} prime(i)) / (Sum_{i=1..m} prime(i)). Sequence gives integer values of F(m) and A051838 gives corresponding values of m. - N. J. A. Sloane, Oct 01 2011

Examples

			a(1) = 1 because 2/2 = 1.
a(2) = 3 because (2*3*5)/(2+3+5) = 30/10 = 3.
a(3) = 125970 because (2*3*5*7*11*13*17*19)/(2+3+5+7+11+13+17+19) = 9699690/77 = 125790.
		

References

  • G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

Crossrefs

Programs

  • Haskell
    import Data.Maybe (catMaybes)
    a116536 n = a116536_list !! (n-1)
    a116536_list = catMaybes $ zipWith div' a002110_list a007504_list where
       div' x y | m == 0    = Just x'
                | otherwise = Nothing where (x',m) = divMod x y
    -- Reinhard Zumkeller, Oct 03 2011
  • Magma
    [p/s: n in [1..40] | IsDivisibleBy(p,s) where p is &*[NthPrime(i): i in [1..n]] where s is &+[NthPrime(i): i in [1..n]]];  // Bruno Berselli, Sep 30 2011
    
  • Maple
    P:=proc(n) local i,j, pp,sp; pp:=1; sp:=0; for i from 1 by 1 to n do pp:=pp*ithprime(i); sp:=sp+ithprime(i); j:=pp/sp; if j=trunc(j) then print(j); fi; od; end: P(100);
  • Mathematica
    seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, prod/sum]], {50}]; seq (* Amiram Eldar, Nov 02 2020 *)

Formula

a(n) = A002110(A051838(n)) / A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011
a(n) = A159578(n)/A001414(A159578(n)). - Amiram Eldar, Nov 02 2020

A130318 Integer values of k!!/S(k), where S(k) is the sum of all odd numbers less than or equal to k, if k is odd, or the sum of all even numbers less than or equal to k, if k is even.

Original entry on oeis.org

1, 1, 4, 128, 11520, 143360, 425425, 2064384, 619315200, 280284364800, 6801567252480, 27512370460575, 178541140377600, 152355106455552000, 167834385271436083200, 6074006324109115392000, 29734853645550994565625, 231916605102348042240000, 392866729043377583554560000
Offset: 0

Views

Author

Keywords

Comments

For n >= 8, a(n) ends with 0 or 5.

Examples

			6 --> 6!! = 48; 6 + 4 + 2 = 12; 48/12 = 4.
17 --> 17!! = 34459425; 17 + 15 + 13 + 11 + 9 + 7 + 5 + 3 + 1 = 81; 34459425/81 = 425425.
		

Crossrefs

Programs

  • Maple
    f:= n-> `if`(irem(doublefactorial(n), floor((n+1)^2/4), 'r')=0, r, [][]):
    map(f, [$1..50])[];  # Alois P. Heinz, Mar 16 2024
  • Mathematica
    Select[Table[Times @@ (t = If[OddQ[n], Range[1, n, 2], Range[2, n, 2]])/Plus @@ t, {n, 41}], IntegerQ] (* Jayanta Basu, Aug 12 2013 *)

Formula

Integers of the form k!!/((k+1)/2)^2, for k odd and k!!/(k*(k+2)/4) for k even. [corrected by Jon E. Schoenfield, Mar 16 2024]

A130319 Numbers k for which k!!/S(k) is an integer, where S(k) is the sum of all odd numbers less than or equal to k, if k is odd, or the sum of all even numbers less than or equal to k, if k is even.

Original entry on oeis.org

1, 2, 6, 10, 14, 16, 17, 18, 22, 26, 28, 29, 30, 34, 38, 40, 41, 42, 46, 48, 49, 50, 52, 53, 54, 58, 62, 64, 65, 66, 68, 69, 70, 74, 76, 77, 78, 82, 86, 88, 89, 90, 94, 96, 97, 98, 100, 101, 102, 106, 108, 109, 110, 112, 113, 114, 118, 122, 124, 125, 126, 128
Offset: 0

Views

Author

Keywords

Examples

			6 --> 6!! = 48; 6 + 4 + 2 = 12; 48/12 = 4.
17 --> 17!! = 34459425; 17 + 15 + 13 + 11 + 9 + 7 + 5 + 3 + 1 = 81; 34459425/81 = 425425.
		

Crossrefs

Programs

  • Maple
    q:= n-> irem(doublefactorial(n), floor((n+1)^2/4))=0:
    select(q, [$1..200])[];  # Alois P. Heinz, Mar 16 2024
  • Mathematica
    r[n_] := If[OddQ[n], Range[1, n, 2], Range[2, n, 2]]; Select[Range[100], Divisible[Times @@ (x = r[#]), Plus @@ x] &] (* Jayanta Basu, Aug 12 2013 *)
    Select[Range[100],If[OddQ[#],Divisible[#!!,((#+1)/2)^2],Divisible[#!!,(#(#+2))/4]]&] (* Harvey P. Dale, Nov 30 2016 *)

A130332 Integer values of n!!/sum(i=0..n,n), with n>=1.

Original entry on oeis.org

1, 1, 21, 1485, 6144, 225225, 17694720, 59520825, 6539968512, 24325703325, 145332633600, 14230536445125, 2596962041856000, 11288163762500625, 78354054748569600, 11665426077721040625, 86068915523813376000
Offset: 0

Views

Author

Keywords

Comments

After the ninth term all the other numbers end in 0 or 5.

Examples

			5!! = 5*3*1 = 15; 5+4+3+2+1 = 15; 15/15 = 1.
13!! = 13*11*9*7*5*3*1 = 135135; 13+12+11+10+9+8+7+6+5+4+3+2+1 = 91; 135135/91 = 1485.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do k:=i; w:=i-2; while w>0 do k:=k*w; w:=w-2; od; j:=sum('w','w'=1..i); a:=k/j; if trunc(a)=a then print(a) fi; od; end: P(100);
  • Mathematica
    Select[Table[n!!/((n(n+1))/2),{n,50}],IntegerQ] (* Harvey P. Dale, Jul 24 2019 *)
Showing 1-5 of 5 results.