A231864 Partial sums of the second power of arithmetic derivative function A003415.
0, 1, 2, 18, 19, 44, 45, 189, 225, 274, 275, 531, 532, 613, 677, 1701, 1702, 2143, 2144, 2720, 2820, 2989, 2990, 4926, 5026, 5251, 5980, 7004, 7005, 7966, 7967, 14367, 14563, 14924, 15068, 18668, 18669, 19110, 19366, 23990, 23991, 25672, 25673, 27977, 29498
Offset: 1
Keywords
Examples
(1')^2+(2')^2+(3')^2+(4')^2+(5')^2=0+1+1+16+1=19->a(5)=19.
Links
- E. J. Barbeau, Remark on an arithmetic derivative, Canad. Math. Bull., vol. 4, no. 2, May 1961, pp. 117-122.
Programs
-
Maple
der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^2,i=1..j),j=1..45);
-
Mathematica
dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^2, {n, 100}]] (* T. D. Noe, Nov 20 2013 *)
Formula
a(n) = sum((i')^2, i=1..n) where i'=A003415.
Comments