cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Giorgio Balzarotti

Giorgio Balzarotti's wiki page.

Giorgio Balzarotti has authored 444 sequences. Here are the ten most recent ones:

A231864 Partial sums of the second power of arithmetic derivative function A003415.

Original entry on oeis.org

0, 1, 2, 18, 19, 44, 45, 189, 225, 274, 275, 531, 532, 613, 677, 1701, 1702, 2143, 2144, 2720, 2820, 2989, 2990, 4926, 5026, 5251, 5980, 7004, 7005, 7966, 7967, 14367, 14563, 14924, 15068, 18668, 18669, 19110, 19366, 23990, 23991, 25672, 25673, 27977, 29498
Offset: 1

Author

Giorgio Balzarotti, Nov 14 2013

Keywords

Comments

a(n)-> ~ 0.4*n^3 as n-> oo (note: 1^2+2^2+3^3+4^4+5^4 ...-> ~ 1/3*n^3)
Note: the partial sums of a power of the arithmetic derivatives of the natural numbers tend to infinity as the partial sums of the natural numbers of the same power. In more general sense: sum(D^d(i)^m, i = 1..n) -> k*n^(m+1) as n-> oo where D^d(i) is the derivative of order d th of the natural number i (d may be = 0, i.e. no derivate).

Examples

			(1')^2+(2')^2+(3')^2+(4')^2+(5')^2=0+1+1+16+1=19->a(5)=19.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^2,i=1..j),j=1..45);
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^2, {n, 100}]] (* T. D. Noe, Nov 20 2013 *)

Formula

a(n) = sum((i')^2, i=1..n) where i'=A003415.

A232172 Partial sums of second arithmetic derivative of natural numbers.

Original entry on oeis.org

0, 0, 0, 4, 4, 5, 5, 21, 26, 27, 27, 59, 59, 65, 77, 157, 157, 167, 167, 211, 218, 219, 219, 267, 274, 282, 309, 389, 389, 390, 390, 566, 575, 576, 592, 684, 684, 694, 726, 798, 798, 799, 799, 911, 927, 937, 937, 1177, 1186, 1225, 1249, 1341, 1341, 1449, 1481
Offset: 1

Author

Giorgio Balzarotti, Nov 19 2013

Keywords

Comments

a(n) = 1''+2''+3''+4''+5''+...+n'' -> ~ constant * n^2 as n -> oo.
Note: a(n) = sum(D^d(i)^m,i=1..n) -> constant * n^(m+1) as n -> oo where D^d(i) is the derivative of order d th of the natural number i (results on arithmetic derivatives descent from Barbeau's paper in References).

Examples

			a(5) = 1'' + 2'' + 3'' + 4'' + 5'' = 0+0+0+4+0 = 4.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(der(i)),i=1..j),j=1..55);

Formula

a(n) = sum(i'', i=1..n), where i'' is the second arithmetic derivative of i (A068346).

A231946 Partial sums of the third power of the arithmetic derivative function A003415.

Original entry on oeis.org

0, 1, 2, 66, 67, 192, 193, 1921, 2137, 2480, 2481, 6577, 6578, 7307, 7819, 40587, 40588, 49849, 49850, 63674, 64674, 66871, 66872, 152056, 153056, 156431, 176114, 208882, 208883, 238674, 238675, 750675, 753419, 760278, 762006, 978006, 978007, 987268, 991364
Offset: 1

Author

Giorgio Balzarotti, Nov 15 2013

Keywords

Comments

a(n) grows roughly like 0.66*n^4 as n->oo.
Note: 1^3 + 2^3 + 3^3 + 4^3 + 5^3 ... -> ~ (1/4)*n^4; the asymptotic similarity between the sum of powers of positive integers and the sum of powers of their derivatives stands also with sums in which the terms are higher powers, i.e., Sum_{j=1..n} j'^m -> k*n^(m+1) as Sum_{j=i..n} j^m -> h*n^(m+1) when n->oo, in other words, the ratio of the two sums is a constant.

Examples

			(1')^3 + (2')^3 + (3')^3 + (4')^3 + (5')^3 = 0+1+1+64+1 = 67, so a(5)=67.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2, p)/op(1, p), p=ifactors(n)[2]): seq(add(der(i)^3,i=1..j),j=1..60);
  • Mathematica
    dn[0] = 0; dn[1] = 0; dn[n_?Negative] := -dn[-n]; dn[n_] := Module[{f = Transpose[FactorInteger[n]]}, If[PrimeQ[n], 1, Plus @@ (n*f[[2]]/f[[1]])]]; Accumulate[Table[dn[n]^3, {n, 100}]] (* T. D. Noe, Nov 20 2013 *)

Formula

a(n) = Sum_{j=1..n} (j')^3, where j' = A003415(j).

A190273 Numbers n such that n' = m+1, with n and m semiprimes and gcd(m,n)>1, where n' is the arithmetic derivative of n.

Original entry on oeis.org

6, 10, 21, 26, 39, 55, 57, 74, 93, 111, 122, 146, 155, 201, 203, 253, 301, 305, 314, 327, 381, 386, 417, 471, 497, 543, 554, 597, 626, 633, 689, 737, 755, 791, 794, 842, 889, 905, 914, 921, 1011, 1027, 1055, 1081, 1082, 1137, 1226, 1227, 1322, 1346, 1379, 1461, 1466, 1477, 1497, 1514, 1623, 1655, 1703, 1711, 1713, 1731, 1751, 1754, 1893, 1967, 1994
Offset: 1

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

The sequence is related to the Rassias Conjecture ("for any prime p there are two primes p1 and p2 such that p*p1=p1+p2+1, p>2, p2>p1", see A190272-A190275), because n = p1*p2, m=p1*p -> p1*p = p1+p2-1. The sequence includes the cases with p=p1 (or p2). Generalization can be achieved by removing semiprimarity condition or accepting gcd(n,m)=1. The differential equation in its general form n'=m+1 includes Giuga Numbers, i.e., n'=b*n+1, or n'=n+1 (A007850).
These are semiprimes n = p*q such that 1/p + 1/q - 1/n = P/Q, where P <> Q are primes. Cf. A326690. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			n=6, 6'=5, m=5+1=6, gcd(6,6)=6 -> a(1)=6
		

Crossrefs

Cf. A001358 (semiprimes), A003415 (arithmetic derivative), A007850 (Giuga numbers), A190272 (n'=m-1), A190273, A190274, A190275.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    seq(`if`(bigomega(i)=2 and bigomega(der(i)-1)=2 and gcd(i,der(i)-1)>1,i,NULL),i=1..2000);

A190275 Semiprimes of the form p*(p^2 - p + 1).

Original entry on oeis.org

6, 21, 301, 2041, 296341, 486877, 2666437, 3420301, 4304341, 7152001, 38159521, 42387097, 54296677, 95235601, 158048281, 229971241, 265434901, 383712781, 454166017, 775307917, 972261181, 1063290841, 1304557801, 1392422041, 1730882401, 1863895261, 2631883561, 2879450461, 3714274297, 3845297341, 4070454361, 4256780041, 4849695001, 5328809461, 5722533337, 5838483601, 7218898681, 7841065621
Offset: 1

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

This sequence is infinite, assuming Schinzel's Hypothesis H.
Related to Rassias Conjecture ("for any odd prime p there are primes q < r such that p*q = q + r + 1") setting p = q. Generalization can be achieved by removing semiprimality condition and accepting p^e, e >= 2.
These are semiprimes m = p*q such that 1/p + 1/q - 1/m = p/q. Cf. A326690. - Amiram Eldar and Thomas Ordowski, Jul 22 2019

Examples

			a(1) = 6 = 2*3 = 2*(2^2-2+1).
a(2) = 21 = 3*7 = 3*(3^2-3+1).
a(3) = 301 = 7*43 = 7*(7^2-7+1).
		

Crossrefs

Cf. A065508 (primes p such that p^2-p+1 is prime).
Cf. A001358 (semiprime), A003415 (arithmetic derivative), A164643, A190272 (n'=a-1), A190273 (n'=a+1), A190274 (n'=p^2-1).

Programs

  • Maple
    seq(`if`(isprime((ithprime(i)^2-ithprime(i)+1))=true,(ithprime(i)^2-ithprime(i)+1)*ithprime(i),NULL),i=1..300);
  • Mathematica
    p = Select[Prime@ Range@ 500, PrimeQ[#^2 - # + 1] &]; p (p^2 - p + 1) (* Giovanni Resta, Jul 22 2019 *)
  • PARI
    forprime(p=2,1e4,if(isprime(k=p^2-p+1),print1(p*k", "))) \\ Charles R Greathouse IV, May 08 2011

A190272 Numbers n such that n' = a -1, with n and a semiprimes and gcd(a,n) > 1, where n' is the arithmetic derivative of n.

Original entry on oeis.org

6, 14, 15, 22, 33, 38, 46, 51, 62, 86, 87, 91, 95, 118, 141, 142, 145, 158, 159, 166, 206, 249, 262, 267, 278, 287, 295, 321, 326, 382, 395, 398, 411, 422, 445, 446, 473, 502, 519, 537, 542, 545, 581, 591, 622, 662, 695, 699, 703, 718, 745, 758, 766, 789, 838, 886, 895, 926, 951, 958, 995, 998, 1046, 1126, 1139, 1145, 1167, 1199, 1238, 1262, 1318, 1329, 1347, 1382, 1401, 1441, 1486, 1678, 1707, 1717, 1718, 1726, 1745, 1757, 1761, 1766
Offset: 1

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

This sequence is infinite, assuming Dickson's conjecture. In fact, the conjecture implies that there are infinitely many terms of this sequence divisible by any fixed prime p. - Charles R Greathouse IV, May 08 2011
Related to the Rassias Conjecture ("for any odd prime p there are primes q < r such that p*q = q+r+1") setting n = q*r, a = q+r+1. The sequence includes the cases with p = q (or p = r). Generalization can be achieved by removing the semiprimality condition or accepting gcd(n,a)=1. The differential equation in its general form n' = a + 1 includes Primary Pseudoperfect numbers, i.e., n' = n-1 (A054377).

Examples

			For n=6, 6' = 5, a = 5-1 = 4, gcd(4,6)=2, so 6 is a term.
		

Crossrefs

Cf. A001358 (semiprimes), A003415 (arithmetic derivative), A054377 (Primary Pseudoperfect).

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    # for quick reference only
    seq(`if`(bigomega(i)=2 and bigomega(der(i)+1)=2 and gcd(i,der(i)+1)>1,i,NULL),i=1..2000);
  • PARI
    find(lim)=my(v=List());forprime(p=2,sqrtint(lim\2),forstep(q=2*p-1,lim\p,p+p,if(isprime(q\p+2)&isprime(q),listput(v,p*q))));vecsort(Vec(v)) \\ Charles R Greathouse IV, May 08 2011

Formula

Semiprimes pq with (p+q+1)/p prime. - Charles R Greathouse IV, May 08 2011

A191216 Arithmetic derivative of prime(n) * prime(n+1) * prime(n+2) * prime(n+3) * prime(n+4) * prime(n+5).

Original entry on oeis.org

361, 230456, 1005768, 3462570, 11006128, 25925028, 61456764, 127697940, 249379116, 448408452, 740850012, 1263239320, 1914568816, 2884222410, 4371191782, 6287341056, 8758591370, 11640682466, 15938770638, 21721208748, 29153150298, 38784336168, 49888704100, 62506263054, 76188213990, 95511276660, 118760260290, 150724895476, 187405610004, 243040520764
Offset: 1

Author

Giorgio Balzarotti, May 26 2011

Keywords

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    seq(dif(ithprime(i)*ithprime(i+1)*ithprime(i+2)*ithprime(i+3)*ithprime(i+4)*ithprime(i+5)),i=1..30);

Formula

a(n) = (prime(n) * prime(n+1) * prime(n+2) * prime(n+3) * prime(n+4) * prime(n+5))' where f' is the arithmetic derivative (see A003415) of f.

A190119 a(n) = Sum_{k=1..n} lcm(k,k')/k, where k' is arithmetic derivative of k.

Original entry on oeis.org

0, 1, 2, 3, 4, 9, 10, 13, 15, 22, 23, 27, 28, 37, 45, 47, 48, 55, 56, 62, 72, 85, 86, 97, 99, 114, 115, 123, 124, 155, 156, 161, 175, 194, 206, 211, 212, 233, 249, 266, 267, 308, 309, 321, 334, 359, 360, 367, 369, 378, 398, 412, 413, 416, 432, 455, 477, 508, 509, 532, 533, 566, 583, 586, 604, 665, 666, 684, 710, 769
Offset: 1

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

Use lcm(1,0)=0.

Examples

			lcm(1,1')/1+lcm(2,2')/2+lcm(3,3')/3=0+2/2+3/3=2 ->a(3)=2.
		

Crossrefs

Cf. A003415.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(lcm(der(i),i)/i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[LCM[k, A003415[k]]/k, {k, 1, n}], {n,1,50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    {A003415(n, f)=sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i])};
    for(n=1,20, print1(sum(k=1,n,lcm(k,A003415(k))/k), ", ")) \\ G. C. Greubel, Dec 29 2017

A190120 a(n) = Sum_{k=1..n} lcm(k,k')/gcd(k,k'), where n' is arithmetic derivative of n.

Original entry on oeis.org

0, 2, 5, 6, 11, 41, 48, 54, 60, 130, 141, 153, 166, 292, 412, 414, 431, 473, 492, 522, 732, 1018, 1041, 1107, 1117, 1507, 1508, 1564, 1593, 2523, 2554, 2564, 3026, 3672, 4092, 4107, 4144, 4942, 5566, 5736, 5777, 7499, 7542, 7674, 7869, 9019, 9066, 9087, 9101, 9191
Offset: 1

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

Use lcm(1,0)=0 and gcd(1,0)=1.

Examples

			lcm(1,1')/gcd(1,1')+lcm(2,2')/gcd(2,2')+lcm(3,3')/gcd(3,3')=0+2/1+3/1=5 ->a(3)=5.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(lcm(der(i),i)/gcd(der(i),i),i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
    Table[Sum[LCM[k, A003415[k]]/GCD[k, A003415[k]], {k, 1, n}], {n,1,50}] (* G. C. Greubel, Dec 29 2017 *)
  • PARI
    {A003415(n, f)=sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i])};
    for(n=1, 50, print1(sum(k=1,n,lcm(k,A003415(k))/gcd(k,A003145(k))), ", ")) \\ G. C. Greubel, Dec 29 2017

A190122 a(n) = Sum_{k=1..n} k*lcm(k,k')/gcd(k,k'), where k' is arithmetic derivative of k.

Original entry on oeis.org

0, 4, 13, 17, 42, 222, 271, 319, 373, 1073, 1194, 1338, 1507, 3271, 5071, 5103, 5392, 6148, 6509, 7109, 11519, 17811, 18340, 19924, 20174, 30314, 30341, 31909, 32750, 60650, 61611, 61931, 77177, 99141, 113841, 114381, 115750, 146074, 170410, 177210, 178891
Offset: 1

Author

Giorgio Balzarotti, May 04 2011

Keywords

Comments

Use lcm(1,0)=0 and gcd(1,0)=1.

Examples

			lcm(1,1')/gcd(1,1')*1+lcm(2,2')/gcd(2,2')*2+lcm(3,3')/gcd(3,3')*3=0+2/1*2+3/1*3=13 ->a(3)=13.
		

Crossrefs

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]):
    seq(add(lcm(der(i),i)/gcd(der(i),i)*i,i=1..n),n=1..50);
  • Mathematica
    A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]];
    Table[Sum[k*LCM[k, A003415[k]]/GCD[k, A003415[k]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Dec 29 2017 *)

Formula

a(n) = Sum_{k=1..n} k*A189036(k).