A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).
1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1
Examples
-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1 a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4. Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
Links
- Antti Karttunen, Table of n, a(n) for n = 1..16384
- Antti Karttunen, Data supplement: n, a(n) computed for n = 1..65537
- Wikipedia, Bernoulli number
- Wikipedia, Carmichael number
- Wikipedia, Giuga number
Crossrefs
Programs
-
Magma
[1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
-
Maple
A326690 := n -> denom((A069359(n)-1)/n): seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
-
Mathematica
PrimeFactors[n_] := Select[Divisors[n], PrimeQ]; f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n]; Table[ f[n], {n, 100}]
-
PARI
a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
-
SageMath
p = lambda n: [n//f[0] for f in factor(n)] A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator() [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
Formula
a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019
Comments