cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-5 of 5 results.

A326690 Denominator of the fraction (Sum_{prime p | n} 1/p - 1/n).

Original entry on oeis.org

1, 1, 1, 4, 1, 3, 1, 8, 9, 5, 1, 4, 1, 7, 15, 16, 1, 9, 1, 20, 7, 11, 1, 24, 25, 13, 27, 28, 1, 1, 1, 32, 33, 17, 35, 36, 1, 19, 13, 40, 1, 21, 1, 44, 45, 23, 1, 16, 49, 25, 51, 52, 1, 27, 11, 8, 19, 29, 1, 60, 1, 31, 63, 64, 65, 11, 1, 68, 69, 35, 1, 72
Offset: 1

Views

Author

Jonathan Sondow, Jul 18 2019

Keywords

Comments

Theorem. If n is a prime or a Carmichael number, then a(n) = A309132(n) = denominator of (N(n-1)/n + D(n-1)/n^2), where B(k) = N(k)/D(k) is the k-th Bernoulli number. This is a generalization of Theorem 1 in A309132 that A309132(p) = 1 if p is a prime. The proof generalizes that in A309132. As an application of Theorem, for n a prime or a Carmichael number one can compute A309132(n) without calculating Bernoulli numbers; see A309268.
A composite number n is a Giuga number A007850 if and only if a(n) = 1. (In fact, Sum_{prime p | n} 1/p - 1/n = 1 for all known Giuga numbers n.)
Semiprimes m = pq such that 1/p + 1/q - 1/m = p/q are exactly A190275. - Amiram Eldar and Thomas Ordowski, Jul 22 2019
The preceding comment may be rephrased as "Semiprimes m = pq such that A326689(m) = p and a(m) = q are exactly A190275." - Jonathan Sondow, Jul 22 2019
More generally, semiprimes m = pq such that 1/p + 1/q - 1/m = P/Q are exactly A190273, where P <> Q are primes. In other words, semiprimes m such that A326689(m) is prime and a(m) is prime are exactly A190273. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			-1/1, 0/1, 0/1, 1/4, 0/1, 2/3, 0/1, 3/8, 2/9, 3/5, 0/1, 3/4, 0/1, 4/7, 7/15, 7/16, 0/1, 7/9, 0/1, 13/20, 3/7, 6/11, 0/1, 19/24, 4/25, 7/13, 8/27, 17/28, 0/1, 1/1
a(12) = denominator of (Sum_{prime p | 12} 1/p - 1/12) = denominator of (1/2 + 1/3 - 1/12) = denominator of 3/4 = 4.
Computing A309132(561) involves numerator(B(560)) which has 865 digits. But 561 is a Carmichael number, so Theorem implies A309132(561) = a(561) = denominator(1/3 + 1/11 + 1/17 - 1/561) = denominator(90/187) = 187.
		

Crossrefs

Numerators are A326689. Quotients n/a(n) are A326691.
Cf. A069359, A007947 (denominator of Sum_{prime p | n} 1/p).

Programs

  • Magma
    [1] cat [Denominator(&+[1/p:p in PrimeDivisors(k)]-1/k):k in [2..72]]; // Marius A. Burtea, Jul 27 2019
  • Maple
    A326690 := n -> denom((A069359(n)-1)/n):
    seq(A326690(n), n=1..72); # Peter Luschny, Jul 22 2019
  • Mathematica
    PrimeFactors[n_] := Select[Divisors[n], PrimeQ];
    f[n_] := Denominator[Sum[1/p, {p, PrimeFactors[n]}] - 1/n];
    Table[ f[n], {n, 100}]
  • PARI
    a(n) = denominator(sumdiv(n, d, isprime(d)/d) - 1/n); \\ Michel Marcus, Jul 19 2019
    
  • SageMath
    p = lambda n: [n//f[0] for f in factor(n)]
    A326690 = lambda n: ((sum(p(n)) - 1)/n).denominator()
    [A326690(n) for n in (1..72)] # Peter Luschny, Jul 22 2019
    

Formula

a(n) = 1 if n is a prime or a Giuga number A007850.
a(n) = denominator of (N(n-1)/n + D(n-1)/n^2) if n is a Carmichael number A002997.
a(n) = denominator((A069359(n) - 1)/n). - Peter Luschny, Jul 22 2019

A190273 Numbers n such that n' = m+1, with n and m semiprimes and gcd(m,n)>1, where n' is the arithmetic derivative of n.

Original entry on oeis.org

6, 10, 21, 26, 39, 55, 57, 74, 93, 111, 122, 146, 155, 201, 203, 253, 301, 305, 314, 327, 381, 386, 417, 471, 497, 543, 554, 597, 626, 633, 689, 737, 755, 791, 794, 842, 889, 905, 914, 921, 1011, 1027, 1055, 1081, 1082, 1137, 1226, 1227, 1322, 1346, 1379, 1461, 1466, 1477, 1497, 1514, 1623, 1655, 1703, 1711, 1713, 1731, 1751, 1754, 1893, 1967, 1994
Offset: 1

Views

Author

Giorgio Balzarotti, May 07 2011

Keywords

Comments

The sequence is related to the Rassias Conjecture ("for any prime p there are two primes p1 and p2 such that p*p1=p1+p2+1, p>2, p2>p1", see A190272-A190275), because n = p1*p2, m=p1*p -> p1*p = p1+p2-1. The sequence includes the cases with p=p1 (or p2). Generalization can be achieved by removing semiprimarity condition or accepting gcd(n,m)=1. The differential equation in its general form n'=m+1 includes Giuga Numbers, i.e., n'=b*n+1, or n'=n+1 (A007850).
These are semiprimes n = p*q such that 1/p + 1/q - 1/n = P/Q, where P <> Q are primes. Cf. A326690. - Amiram Eldar and Thomas Ordowski, Jul 25 2019

Examples

			n=6, 6'=5, m=5+1=6, gcd(6,6)=6 -> a(1)=6
		

Crossrefs

Cf. A001358 (semiprimes), A003415 (arithmetic derivative), A007850 (Giuga numbers), A190272 (n'=m-1), A190273, A190274, A190275.

Programs

  • Maple
    der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]);
    seq(`if`(bigomega(i)=2 and bigomega(der(i)-1)=2 and gcd(i,der(i)-1)>1,i,NULL),i=1..2000);

A309378 a(n) is the smallest squarefree number m with n prime factors such that Sum_{prime q|m} 1/q - 1/m = P/Q, where P <> Q are primes, for n > 1, or a(n) = 1 if no such m.

Original entry on oeis.org

1, 6, 105, 1330, 331230, 4081530, 127357230
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Jul 26 2019

Keywords

Comments

Associated fractions P/Q for n > 1 are 2/3, 2/3, 17/19, 191/181, 19/17, 5701/4241, .... Note that Q | m.
a(n) is the least m with Omega(m) = omega(m) = n such that A326689(m) is a prime P and A326690(m) is a prime Q, or a(n) = 1 if no such m.

Examples

			1/2 + 1/3 - 1/6 = 2/3,
1/3 + 1/5 + 1/7 - 1/105 = 2/3,
1/2 + 1/5 + 1/7 + 1/19 - 1/1330 = 17/19,
....
6 = 2*3, 105 = 3*5*7, 1330 = 2*5*7*19, 331230 = 2*3*5*61*181, 127357230 = 2*3*5*17*53*151, ... - _Jonathan Sondow_, Jul 27 2019
		

Crossrefs

Programs

  • Mathematica
    m=2; s={}; Do[f = FactorInteger[n]; p = f[[;; , 1]]; e = f[[;; , 2]]; If[Max[e] > 1 || Length[e] < m, Continue[]]; frac = Total@(1/p) - 1/n; num = Numerator[frac]; den = Denominator[frac]; If[den != num && PrimeQ[num] && PrimeQ[den], AppendTo[s, n]; m++], {n, 1, 5*10^6}]; s
  • PARI
    a(n) = {for(i = 2, oo, if(is(i, n), return(i)))}
    is(m, qp) = {my(f = factor(m)); if(#f~ != qp, return(0)); if(Set(f[,2]) != Set([1]), return(0)); s = sum(i = 1, qp, 1/f[i, 1]) - 1/m; isprime(denominator(s)) && isprime(numerator(s))} \\ David A. Corneth, Jul 27 2019

A306270 Composite numbers k such that b^(k(k-1)) == 1 (mod k^2) for every b coprime to k.

Original entry on oeis.org

4, 6, 12, 20, 21, 28, 42, 52, 60, 66, 84, 105, 156, 165, 186, 220, 231, 273, 276, 301, 364, 385, 420, 465, 506, 532, 561, 609, 645, 651, 660, 780, 804, 903, 946, 1036, 1045, 1065, 1092, 1105, 1204, 1265, 1281, 1365, 1491, 1540, 1705, 1716, 1729, 1771, 1806, 1860
Offset: 1

Views

Author

Amiram Eldar and Thomas Ordowski, Feb 01 2019

Keywords

Comments

These are composites k such that lambda(k^2) divides k(k-1), where lambda is the Carmichael function A002322.
Since lambda(p^2) = phi(p^2) = p(p-1), where p is a prime, then by Euler's theorem b^(p(p-1)) == 1 (mod p^2) for every b indivisible by p.
This sequence includes all Carmichael numbers A002997.
Conjecture: all semiprimes > 4 in this sequence are in A190275. - Thomas Ordowski, Jul 19 2020
The conjecture was verified up to 1063290841. - Amiram Eldar, Jul 19 2020

Crossrefs

A190275 is a subsequence. - Thomas Ordowski, Jul 19 2020

Programs

  • Mathematica
    Select[Range[2000], CompositeQ[#] && Divisible[#(#-1), CarmichaelLambda[#^2]] &]
  • PARI
    isok(k) = (k!=1) && !isprime(k) && !(k*(k-1) % lcm(znstar(k^2)[2])); \\ Michel Marcus, Mar 12 2019

A341274 Composite numbers k that are divisible by (k mod sopfr(k))+floor(k/sopfr(k)), where sopfr = A001414.

Original entry on oeis.org

4, 6, 12, 16, 20, 21, 24, 27, 30, 36, 40, 45, 48, 52, 56, 60, 66, 70, 72, 75, 80, 84, 88, 90, 96, 105, 108, 112, 117, 126, 140, 150, 152, 160, 180, 182, 192, 195, 198, 200, 220, 224, 225, 231, 240, 252, 255, 256, 270, 286, 288, 290, 301, 306, 308, 320, 330, 344, 345, 352, 360, 378, 384, 396, 429
Offset: 1

Views

Author

J. M. Bergot and Robert Israel, Feb 08 2021

Keywords

Examples

			a(5) = 20 is a term because sopfr(20) = 2*2+5 = 9, and 20 is divisible by (20 mod 9)+floor(20/9) = 4.
		

Crossrefs

Contains A190275.
Cf. A001414.

Programs

  • Maple
    spf:= proc(n) local t; add(t[1]*t[2],t=ifactors(n)[2]) end proc:
    filter:= proc(n) local s, m;
      if isprime(n) then return false fi;
      s:= spf(n);
      m:= n mod s;
      n mod (m + (n-m)/s) = 0
    end proc:
    select(filter, [$4..500]);
Showing 1-5 of 5 results.