cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-1 of 1 results.

A306259 Composite numbers k such that 2^(k(k-1)) == 1 (mod k^2).

Original entry on oeis.org

21, 105, 165, 205, 231, 273, 301, 341, 385, 465, 561, 609, 645, 651, 861, 889, 903, 1045, 1065, 1105, 1265, 1281, 1365, 1387, 1491, 1705, 1729, 1771, 1785, 1905, 2041, 2047, 2145, 2211, 2265, 2329, 2359, 2373, 2465, 2485, 2665, 2667, 2701, 2821, 3045, 3081, 3165, 3171, 3201, 3277
Offset: 1

Views

Author

Thomas Ordowski, Feb 01 2019

Keywords

Comments

Composites k such that A002326((k^2-1)/2) divides k(k-1).
It contains all Fermat pseudoprimes to base 2, A001567.
Since phi(p^2) = p(p-1), where p is a prime, then by Euler's theorem 2^(p(p-1)) == 1 (mod p^2) for every odd prime p.

Crossrefs

Programs

  • Maple
    filter:= k -> not isprime(k) and 2 &^ (k*(k-1)) mod (k^2) = 1:
    select(filter, [$4..10000]); # Robert Israel, Feb 07 2019
  • Mathematica
    Select[Range[3300], And[CompositeQ@ #, PowerMod[2, # (# - 1), #^2] == 1] &] (* Michael De Vlieger, Feb 03 2019 *)
  • PARI
    isok(k) = !isprime(k) && ((2^(k*(k-1)) % k^2) == 1); \\ Michel Marcus, Feb 01 2019
Showing 1-1 of 1 results.