A190120 a(n) = Sum_{k=1..n} lcm(k,k')/gcd(k,k'), where n' is arithmetic derivative of n.
0, 2, 5, 6, 11, 41, 48, 54, 60, 130, 141, 153, 166, 292, 412, 414, 431, 473, 492, 522, 732, 1018, 1041, 1107, 1117, 1507, 1508, 1564, 1593, 2523, 2554, 2564, 3026, 3672, 4092, 4107, 4144, 4942, 5566, 5736, 5777, 7499, 7542, 7674, 7869, 9019, 9066, 9087, 9101, 9191
Offset: 1
Keywords
Examples
lcm(1,1')/gcd(1,1')+lcm(2,2')/gcd(2,2')+lcm(3,3')/gcd(3,3')=0+2/1+3/1=5 ->a(3)=5.
Links
- G. C. Greubel, Table of n, a(n) for n = 1..10000
Programs
-
Maple
der:=n->n*add(op(2,p)/op(1,p),p=ifactors(n)[2]): seq(add(lcm(der(i),i)/gcd(der(i),i),i=1..n),n=1..50);
-
Mathematica
A003415[n_]:= If[Abs@n < 2, 0, n Total[#2/#1 & @@@FactorInteger[Abs@n]]]; Table[Sum[LCM[k, A003415[k]]/GCD[k, A003415[k]], {k, 1, n}], {n,1,50}] (* G. C. Greubel, Dec 29 2017 *)
-
PARI
{A003415(n, f)=sum(i=1, #f=factor(n)~, n/f[1, i]*f[2, i])}; for(n=1, 50, print1(sum(k=1,n,lcm(k,A003415(k))/gcd(k,A003145(k))), ", ")) \\ G. C. Greubel, Dec 29 2017
Comments