cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130318 Integer values of k!!/S(k), where S(k) is the sum of all odd numbers less than or equal to k, if k is odd, or the sum of all even numbers less than or equal to k, if k is even.

Original entry on oeis.org

1, 1, 4, 128, 11520, 143360, 425425, 2064384, 619315200, 280284364800, 6801567252480, 27512370460575, 178541140377600, 152355106455552000, 167834385271436083200, 6074006324109115392000, 29734853645550994565625, 231916605102348042240000, 392866729043377583554560000
Offset: 0

Views

Author

Keywords

Comments

For n >= 8, a(n) ends with 0 or 5.

Examples

			6 --> 6!! = 48; 6 + 4 + 2 = 12; 48/12 = 4.
17 --> 17!! = 34459425; 17 + 15 + 13 + 11 + 9 + 7 + 5 + 3 + 1 = 81; 34459425/81 = 425425.
		

Crossrefs

Programs

  • Maple
    f:= n-> `if`(irem(doublefactorial(n), floor((n+1)^2/4), 'r')=0, r, [][]):
    map(f, [$1..50])[];  # Alois P. Heinz, Mar 16 2024
  • Mathematica
    Select[Table[Times @@ (t = If[OddQ[n], Range[1, n, 2], Range[2, n, 2]])/Plus @@ t, {n, 41}], IntegerQ] (* Jayanta Basu, Aug 12 2013 *)

Formula

Integers of the form k!!/((k+1)/2)^2, for k odd and k!!/(k*(k+2)/4) for k even. [corrected by Jon E. Schoenfield, Mar 16 2024]

A130333 Numbers k >= 1 for which k!!/Sum_{i=1..k} k is an integer.

Original entry on oeis.org

1, 5, 9, 13, 14, 17, 20, 21, 24, 25, 26, 29, 32, 33, 34, 37, 38, 41, 44, 45, 48, 49, 50, 53, 54, 56, 57, 61, 62, 64, 65, 68, 69, 73, 74, 76, 77, 80, 81, 84, 85, 86, 89, 90, 92, 93, 94, 97, 98, 101, 104, 105, 109, 110, 113, 114, 116, 117, 118, 120, 121, 122
Offset: 0

Views

Author

Keywords

Examples

			5!! = 5*3*1 = 15; 5+4+3+2+1 = 15; 15/15 = 1.
13!! = 13*11*9*7*5*3*1 = 135135; 13+12+11+10+9+8+7+6+5+4+3+2+1 = 91; 135135/91 = 1485.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do k:=i; w:=i-2; while w>0 do k:=k*w; w:=w-2; od; j:=sum('w','w'=1..i); a:=k/j; if trunc(a)=a then print(i) fi; od; end: P(100);
  • Mathematica
    pr[n_] := Times @@ If[OddQ[n], Range[1, n, 2], Range[2, n, 2]]; Select[Range[122], Divisible[pr[#], Total[Range[#]]] &] (* Jayanta Basu, Aug 11 2013 *)
    Select[Range[200],Divisible[#!!,(#(#+1))/2]&] (* Harvey P. Dale, Feb 09 2015 *)

Extensions

More terms from Jayanta Basu, Aug 11 2013
Showing 1-2 of 2 results.