cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A130319 Numbers k for which k!!/S(k) is an integer, where S(k) is the sum of all odd numbers less than or equal to k, if k is odd, or the sum of all even numbers less than or equal to k, if k is even.

Original entry on oeis.org

1, 2, 6, 10, 14, 16, 17, 18, 22, 26, 28, 29, 30, 34, 38, 40, 41, 42, 46, 48, 49, 50, 52, 53, 54, 58, 62, 64, 65, 66, 68, 69, 70, 74, 76, 77, 78, 82, 86, 88, 89, 90, 94, 96, 97, 98, 100, 101, 102, 106, 108, 109, 110, 112, 113, 114, 118, 122, 124, 125, 126, 128
Offset: 0

Views

Author

Keywords

Examples

			6 --> 6!! = 48; 6 + 4 + 2 = 12; 48/12 = 4.
17 --> 17!! = 34459425; 17 + 15 + 13 + 11 + 9 + 7 + 5 + 3 + 1 = 81; 34459425/81 = 425425.
		

Crossrefs

Programs

  • Maple
    q:= n-> irem(doublefactorial(n), floor((n+1)^2/4))=0:
    select(q, [$1..200])[];  # Alois P. Heinz, Mar 16 2024
  • Mathematica
    r[n_] := If[OddQ[n], Range[1, n, 2], Range[2, n, 2]]; Select[Range[100], Divisible[Times @@ (x = r[#]), Plus @@ x] &] (* Jayanta Basu, Aug 12 2013 *)
    Select[Range[100],If[OddQ[#],Divisible[#!!,((#+1)/2)^2],Divisible[#!!,(#(#+2))/4]]&] (* Harvey P. Dale, Nov 30 2016 *)

A130332 Integer values of n!!/sum(i=0..n,n), with n>=1.

Original entry on oeis.org

1, 1, 21, 1485, 6144, 225225, 17694720, 59520825, 6539968512, 24325703325, 145332633600, 14230536445125, 2596962041856000, 11288163762500625, 78354054748569600, 11665426077721040625, 86068915523813376000
Offset: 0

Views

Author

Keywords

Comments

After the ninth term all the other numbers end in 0 or 5.

Examples

			5!! = 5*3*1 = 15; 5+4+3+2+1 = 15; 15/15 = 1.
13!! = 13*11*9*7*5*3*1 = 135135; 13+12+11+10+9+8+7+6+5+4+3+2+1 = 91; 135135/91 = 1485.
		

Crossrefs

Programs

  • Maple
    P:=proc(n) local a,i,j,k,w; for i from 1 by 1 to n do k:=i; w:=i-2; while w>0 do k:=k*w; w:=w-2; od; j:=sum('w','w'=1..i); a:=k/j; if trunc(a)=a then print(a) fi; od; end: P(100);
  • Mathematica
    Select[Table[n!!/((n(n+1))/2),{n,50}],IntegerQ] (* Harvey P. Dale, Jul 24 2019 *)
Showing 1-2 of 2 results.