cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-8 of 8 results.

A166604 Numbers k such that Sum_{i=1..k} i^4 divides Product_{i=1..k} i^4.

Original entry on oeis.org

1, 31, 59, 94, 104, 122, 133, 181, 206, 223, 244, 248, 283, 298, 318, 342, 356, 401, 406, 421, 422, 439, 444, 449, 451, 469, 479, 493, 496, 507, 528, 532, 536, 541, 555, 597, 631, 637, 643, 668, 701, 706, 712, 717, 721, 722, 754, 762, 795, 797, 801, 815, 842
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(4) = 31.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 1000, If[ Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^4; p = p*k^4]; lst (* Robert G. Wilson v, Nov 02 2009 *)
    Module[{nn=1000,c},c=Range[nn]^4;Select[Range[nn],Divisible[Times@@ Take[ c,#], Total[Take[c,#]]]&]] (* Harvey P. Dale, Dec 18 2013 *)

Extensions

a(15)-a(53) from Robert G. Wilson v, Nov 02 2009

A166605 Numbers k such that Sum_{i=1..k} i^5 divides Product_{i=1..k} i^5.

Original entry on oeis.org

1, 13, 64, 95, 111, 118, 123, 133, 134, 140, 151, 177, 199, 217, 229, 242, 255, 264, 274, 281, 302, 305, 325, 333, 338, 354, 359, 365, 376, 394, 411, 414, 431, 433, 440, 472, 475, 477, 489, 514, 525, 528, 529, 537, 547, 569, 574, 583, 584, 585, 589, 594, 615
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(5) = 13.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 100000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^5; p = p*k^5]; lst  (* G. C. Greubel, May 18 2016 *)
    Module[{nn=1000,i5},i5=Range[nn]^5;Position[Table[Times@@Take[i5,n]/Total[Take[i5,n]],{n,nn}],?IntegerQ]]//Flatten (* _Harvey P. Dale, Jan 18 2025 *)

Extensions

More terms from Max Alekseyev, Sep 29 2010

A166609 Numbers k such that Sum_{i=1..k} i^9 divides Product_{i=1..k} i^9.

Original entry on oeis.org

1, 1441, 1715, 11706, 16741, 18435, 23793, 29927, 32071, 33932, 45768, 45831, 47103, 47215, 48257, 55743, 56007, 61976, 62773, 64841, 68561, 70853, 70880, 81624, 83526, 86243, 87529, 88162, 91054, 91395, 92288, 92933, 94211, 98982
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(9) = 1441.
		

Crossrefs

Extensions

More terms from Max Alekseyev, Sep 30 2010

A166606 Numbers k such that Sum_{i=1..k} i^6 divides Product_{i=1..k} i^6.

Original entry on oeis.org

1, 1556, 1640, 3907, 5642, 6205, 7238, 8311, 10350, 11551, 12499, 13371, 13812, 17524, 17589, 18162, 18790, 21569, 21573, 22381, 22544, 23809, 24312, 24416, 24598, 24629, 25247, 25463, 26093, 26583, 26829, 27091, 27098, 28646, 28804
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(6) = 1556.
		

Crossrefs

Programs

  • Mathematica
    k = s = 1; p = 1; lst = {}; While[k < 5000, If[Mod[p, s] == 0, AppendTo[lst, k]]; k++; s = s + k^6; p = p*k^6]; lst (* G. C. Greubel, May 18 2016 *)

Extensions

More terms from Max Alekseyev, Sep 30 2010

A166607 Numbers k such that Sum_{i=1..k} i^7 divides Product_{i=1..k} i^7.

Original entry on oeis.org

1, 733, 1637, 2096, 2367, 4231, 5674, 5839, 7585, 8344, 13719, 13753, 14983, 15151, 15197, 15257, 15757, 16595, 17305, 18791, 20701, 21442, 23652, 23738, 24519, 24789, 25474, 25916, 25933, 27474, 27487, 29185, 31455, 32846, 32950, 33421
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Examples

			a(2) = A125314(7) = 733.
		

Crossrefs

Programs

  • Mathematica
    With[{c=Range[40000]^7},Flatten[Position[#[[1]]/#[[2]]&/@Thread[ {Rest[ FoldList[ Times,1,c]],Accumulate[c]}],?IntegerQ]]] (* _Harvey P. Dale, Nov 16 2014 *)

Extensions

More terms from Max Alekseyev, Sep 30 2010

A125294 Numerator of (Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2).

Original entry on oeis.org

1, 5, 7, 5, 11, 91, 1, 17, 19, 11, 23, 13, 1, 29, 31, 17, 1, 703, 1, 41, 43, 23, 47, 1, 1, 53, 1, 29, 59, 1891, 1, 1, 67, 1, 71, 2701, 1, 1, 79, 41, 83, 43, 1, 89, 1, 47, 1, 97, 1, 101, 103, 53, 107, 109, 1, 113, 1, 59, 1, 61, 1, 1, 127, 1, 131, 67, 1, 137, 139, 71, 1, 73, 1, 149
Offset: 1

Views

Author

Alexander Adamchuk, Jan 17 2007

Keywords

Comments

All a(n) are either 1, semiprime or prime.
a(n) = 1 for n = 1 and n = {7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, ...} = A067656 = numbers n such that n!*B(2*n) is an integer, where the B(2*n)'s are the Bernoulli numbers.
p divides a(p-1) for prime p > 3. p divides a((p-1)/2) for prime p > 3.
a(p-1) = p*(2p-1) is a semiprime hexagonal number for prime p = {7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, ...} = A005382(n) for n > 2, where A005382(n) are the numbers n such that n and 2*n-1 are primes.
a(p-1) = p for prime p = {5, 11, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, ...} = primes that do not belong to A005382(n).
a((p-1)/2) = p for prime p = {5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 259, 271, 281, 283, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 401, ...}, which is apparently the union of {5} and A034849(n).

Examples

			The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735. - _Petros Hadjicostas_, May 09 2020
		

Crossrefs

Cf. A005382, A034849, A067656, A166602, A334735 (denominators).

Programs

  • Mathematica
    Table[Numerator[n(n+1)(2n+1)/6/(n!)^2],{n,1,500}]
  • PARI
    a(n) = numerator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020

Formula

a(n) = numerator((Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2)).
a(n) = numerator(n*(n+1)*(2*n+1)/6/(n!)^2).

A067656 Numbers n such that n!*B(2n) is an integer, where B(2n) are the Bernoulli numbers.

Original entry on oeis.org

7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Benoit Cloitre, Feb 03 2002

Keywords

Comments

A045979(n), Bernoulli numbers with denominators 6, are included in the sequence.
Also numbers n such that both n+1 and 2n+1 are not prime. - Alexander Adamchuk, Oct 05 2006

Crossrefs

Cf. A166602. - R. J. Mathar, Feb 14 2010

Programs

  • Mathematica
    Select[Range[2,1000],Numerator[ #(#+1)(2#+1)/6/#!^2]==1&] (* Alexander Adamchuk, Oct 05 2006 *)
    Select[Range[1000],!PrimeQ[ #+1]&&!PrimeQ[2#+1]&] (* Alexander Adamchuk, Oct 05 2006 *)

Formula

Also numbers n>1 such that A000330[n] = Sum[k^2,{k,1,n}] = n(n+1)(2n+1)/6 divides A001044[n] = Product[k^2,{k,1,n}] = (n!)^2. Also numbers n>1 such that Numerator[n(n+1)(2n+1)/6 /(n!)^2] = 1. - Alexander Adamchuk, Oct 05 2006

A334735 Denominator of Sum_{k=1..n} k^2 / Product_{k=1..n} k^2.

Original entry on oeis.org

1, 4, 18, 96, 2880, 518400, 181440, 135475200, 8778792960, 376233984000, 72425041920000, 4588850656051200, 47345284546560000, 217144413044342784000, 42750306318104985600000, 4974581098834034688000000, 70875936417673484697600000, 13663463022599094380003328000000
Offset: 1

Views

Author

Petros Hadjicostas, May 09 2020

Keywords

Examples

			The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735.
		

Crossrefs

Cf. A125294 (numerators), A166602.

Programs

  • Mathematica
    Table[Denominator[n*(n + 1)*(2*n + 1)/(6*(n!)^2)], {n, 1, 18}] (* Amiram Eldar, May 09 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020

Formula

a(n) = denominator(n*(n + 1)*(2*n + 1)/6/(n!)^2).
Showing 1-8 of 8 results.