cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-3 of 3 results.

A166602 Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.

Original entry on oeis.org

1, 7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Comments

Product_{i=1..k} i^2 = (k!)^2 and Sum_{i=1..k} i^2 = k*(k+1)*(2*k+1)/6. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

Examples

			a(2) = A125314(2) = 7.
		

Crossrefs

Programs

  • Maple
    q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0):
    select(q, [$1..200])[];  # Alois P. Heinz, May 09 2020
  • Mathematica
    Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ Michel Marcus, May 09 2020

Extensions

Terms below 5000 by J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
More terms copied from the b-file by R. J. Mathar, Feb 14 2010

A181426 Numerator of Sum_{k=1..n} k^4 / Product_{k=1..n} k^4.

Original entry on oeis.org

1, 17, 49, 59, 979, 91, 167, 731, 5111, 517, 1817, 6071, 109, 18241, 22289, 2771, 131, 28823, 67, 51619, 11911, 34891, 15557, 257, 1949, 22313, 2267, 14123, 153931, 5273999, 1, 3167, 45091, 3569, 268309, 126947, 4217, 127, 369641, 201679, 85739
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2010

Keywords

Comments

a(n) = 1 for n = {1, 31, 59, 94, 104, 122, 133, 181, 206, 223, ...} = A166604.

Examples

			The first few fractions are 1, 17/16, 49/648, 59/55296, 979/207360000, 91/10749542400, 167/23044331520000, ... = A181426/A334734.
		

Crossrefs

Cf. A090585 = Numerator of Sum/Product of first n numbers.
Cf. A125294 = Numerator of Sum/Product of squares of first n numbers.
Cf. A166604, A334734 (denominators).

Programs

  • Mathematica
    Table[Numerator[Sum[ k^4, {k, 1, n}] / Product[k^4, {k, 1, n}]], {n, 1, 100}]
    With[{c=Range[50]^4},Numerator[Accumulate[c]/FoldList[Times,c]]] (* Harvey P. Dale, Jul 03 2025 *)
  • PARI
    a(n) = numerator(sum(k=1, n, k^4)/prod(k=1, n, k^4)); \\ Michel Marcus, May 09 2020

A334735 Denominator of Sum_{k=1..n} k^2 / Product_{k=1..n} k^2.

Original entry on oeis.org

1, 4, 18, 96, 2880, 518400, 181440, 135475200, 8778792960, 376233984000, 72425041920000, 4588850656051200, 47345284546560000, 217144413044342784000, 42750306318104985600000, 4974581098834034688000000, 70875936417673484697600000, 13663463022599094380003328000000
Offset: 1

Views

Author

Petros Hadjicostas, May 09 2020

Keywords

Examples

			The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735.
		

Crossrefs

Cf. A125294 (numerators), A166602.

Programs

  • Mathematica
    Table[Denominator[n*(n + 1)*(2*n + 1)/(6*(n!)^2)], {n, 1, 18}] (* Amiram Eldar, May 09 2020 *)
  • PARI
    a(n) = denominator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020

Formula

a(n) = denominator(n*(n + 1)*(2*n + 1)/6/(n!)^2).
Showing 1-3 of 3 results.