cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-2 of 2 results.

A166602 Numbers k such that Sum_{i=1..k} i^2 divides Product_{i=1..k} i^2.

Original entry on oeis.org

1, 7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, 55, 57, 59, 61, 62, 64, 67, 71, 73, 76, 77, 79, 80, 84, 85, 87, 91, 92, 93, 94, 97, 101, 103, 104, 107, 109, 110, 115, 117, 118, 121, 122, 123, 124, 127, 129, 132, 133, 137, 139, 142, 143, 144, 145, 147
Offset: 1

Views

Author

Alexander Adamchuk, Oct 18 2009

Keywords

Comments

Product_{i=1..k} i^2 = (k!)^2 and Sum_{i=1..k} i^2 = k*(k+1)*(2*k+1)/6. - J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010

Examples

			a(2) = A125314(2) = 7.
		

Crossrefs

Programs

  • Maple
    q:= k-> is(irem(k!^2, k*(k+1)*(2*k+1)/6)=0):
    select(q, [$1..200])[];  # Alois P. Heinz, May 09 2020
  • Mathematica
    Cases[Range[2, 5000], k_ /; Divisible[Factorial[k - 1]^2, 1/6 (-1 + k) k (-1 + 2 k)]] - 1 (* J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010 *)
  • PARI
    isok(k) = ((k!)^2 % (k*(k+1)*(2*k+1)/6)) == 0; \\ Michel Marcus, May 09 2020

Extensions

Terms below 5000 by J. Mulder (jasper.mulder(AT)planet.nl), Jan 25 2010
More terms copied from the b-file by R. J. Mathar, Feb 14 2010

A125294 Numerator of (Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2).

Original entry on oeis.org

1, 5, 7, 5, 11, 91, 1, 17, 19, 11, 23, 13, 1, 29, 31, 17, 1, 703, 1, 41, 43, 23, 47, 1, 1, 53, 1, 29, 59, 1891, 1, 1, 67, 1, 71, 2701, 1, 1, 79, 41, 83, 43, 1, 89, 1, 47, 1, 97, 1, 101, 103, 53, 107, 109, 1, 113, 1, 59, 1, 61, 1, 1, 127, 1, 131, 67, 1, 137, 139, 71, 1, 73, 1, 149
Offset: 1

Views

Author

Alexander Adamchuk, Jan 17 2007

Keywords

Comments

All a(n) are either 1, semiprime or prime.
a(n) = 1 for n = 1 and n = {7, 13, 17, 19, 24, 25, 27, 31, 32, 34, 37, 38, 43, 45, 47, 49, ...} = A067656 = numbers n such that n!*B(2*n) is an integer, where the B(2*n)'s are the Bernoulli numbers.
p divides a(p-1) for prime p > 3. p divides a((p-1)/2) for prime p > 3.
a(p-1) = p*(2p-1) is a semiprime hexagonal number for prime p = {7, 19, 31, 37, 79, 97, 139, 157, 199, 211, 229, 271, 307, 331, 337, 367, 379, 439, 499, ...} = A005382(n) for n > 2, where A005382(n) are the numbers n such that n and 2*n-1 are primes.
a(p-1) = p for prime p = {5, 11, 13, 17, 23, 29, 41, 43, 47, 53, 59, 61, 67, 71, 73, 83, 89, ...} = primes that do not belong to A005382(n).
a((p-1)/2) = p for prime p = {5, 7, 11, 17, 19, 23, 29, 31, 41, 43, 47, 53, 59, 67, 71, 79, 83, 89, 97, 101, 103, 107, 109, 113, 127, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 191, 197, 199, 211, 223, 227, 229, 233, 239, 241, 251, 257, 263, 259, 271, 281, 283, 293, 307, 311, 317, 331, 337, 347, 349, 353, 359, 367, 373, 379, 383, 389, 401, ...}, which is apparently the union of {5} and A034849(n).

Examples

			The first few fractions are 1, 5/4, 7/18, 5/96, 11/2880, 91/518400, 1/181440, 17/135475200, 19/8778792960, ... = A125294/A334735. - _Petros Hadjicostas_, May 09 2020
		

Crossrefs

Cf. A005382, A034849, A067656, A166602, A334735 (denominators).

Programs

  • Mathematica
    Table[Numerator[n(n+1)(2n+1)/6/(n!)^2],{n,1,500}]
  • PARI
    a(n) = numerator(sum(k=1, n, k^2)/prod(k=1, n, k^2)); \\ Michel Marcus, May 09 2020

Formula

a(n) = numerator((Sum_{k=1..n} k^2) / (Product_{k=1..n} k^2)).
a(n) = numerator(n*(n+1)*(2*n+1)/6/(n!)^2).
Showing 1-2 of 2 results.