cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-7 of 7 results.

A264608 Degeneracies of entanglement witness eigenstates for spin 3 particles.

Original entry on oeis.org

1, 0, 1, 1, 7, 31, 175, 981, 5719, 33922, 204687, 1251460, 7737807, 48297536, 303922983, 1926038492, 12281450455, 78741558512, 507301771543, 3282586312161, 21323849229781, 139012437340660, 909161626641121, 5963576112550771, 39223341189188339, 258619428254117476, 1709124801693650075
Offset: 0

Views

Author

N. J. A. Sloane, Nov 24 2015

Keywords

Examples

			A(x) = 1 + x^2 + x^3 + 7*x^4 + 31*x^5 + 175*x^6 + 981*x^7 + ...
		

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, this sequence, A272392, A272393, A272394, A272395.
Cf. A348210 (column k=3).

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(64t^3-80t^2+24t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
    a[n_]:= c[0, n, 3]-c[1, n, 3]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 3]; mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 26; S = 3;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
    
  • PARI
    seq(N) = {
      my(a = vector(N), s); a[2]=1; a[3]=1; a[4]=7; a[5]=31;
      for (n=6, N, s = ((n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a[n-1] + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a[n-2] - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a[n-3] - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a[n-4]);
        a[n] = s/(3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)));
      concat(1,a);
    };
    seq(26) \\ Gheorghe Coserea, Aug 07 2018

Formula

a(n) ~ (1/8^(3/2))*7^n/(sqrt(Pi)*n^(3/2)) * (1-27/(32*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence 3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)*a(n) = (n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a(n-1) + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a(n-2) - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a(n-3) - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a(n-4). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(7x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
From Gheorghe Coserea, Aug 07 2018: (Start)
G.f. y=A(x) satisfies:
0 = x^3*(x + 1)^4*(49*x^2 - 14*x - 27)^2*y^8 + 2*x^3*(x + 1)^3*(35*x + 23)*(49*x^2 - 14*x - 27)*y^6 + x^2*(x + 1)^2*(1421*x^3 + 1652*x^2 + 393*x - 54)*y^4 + x*(x + 1)*(147*x^3 + 175*x^2 + 51*x - 1)*y^2 + x*(2*x + 1)^2.
0 = x^2*(x + 1)*(7*x - 1)*(7*x + 1)*(49*x^2 - 70*x + 5)*(49*x^2 - 14*x - 27)*y''' + x*(1058841*x^7 - 1092455*x^6 - 1212505*x^5 + 627347*x^4 + 222999*x^3 - 6657*x^2 - 5015*x + 405)*y'' + 2*(1058841*x^7 - 1428595*x^6 - 725102*x^5 + 224322*x^4 + 24157*x^3 + 6909*x^2 - 720*x + 60)*y' + 14*x*(50421*x^5 - 84035*x^4 - 19894*x^3 - 2058*x^2 + 665*x - 75)*y.
(End)

Extensions

More terms from Gheorghe Coserea, Apr 28 2016

A272393 Degeneracies of entanglement witness eigenstates for n spin 4 irreducible representations.

Original entry on oeis.org

1, 0, 1, 1, 9, 51, 369, 2661, 19929, 151936, 1178289, 9259812, 73593729, 590475744, 4776464121, 38912018796, 318971849625, 2629040965776, 21774894337449, 181136924953317, 1512731101731499, 12678230972826340, 106600213003114719
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, this sequence, A272394, A272395.
Cf. A348210 (column k=4).

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*((4t-1)(4t(4t-3)^2-1))^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, n, 4]-c[1, n, 4]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 4]
    mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 26; S = 4;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) ~ (3/40)^(3/2)*9^n/(sqrt(Pi)*n^(3/2)) * (1-129/(160*n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
D-finite with recurrence 8*n*(2*n - 5)*(2*n - 3)*(2*n - 1)*(4*n - 1)*(4*n + 1)*(5*n - 17)*(5*n - 12)*(5*n - 8)*(5*n - 7)*a(n) = (n-1)*(2*n - 5)*(2*n - 3)*(5*n - 17)*(5*n - 12)*(5*n - 3)*(5*n - 2)*(2101*n^3 - 6506*n^2 + 6608*n - 2200)*a(n-1) + 9*(n-1)*(2*n - 5)*(2*n - 1)*(4*n - 1)*(5*n - 17)*(5*n - 8)*(5*n - 7)*(385*n^3 - 1659*n^2 + 2008*n - 492)*a(n-2) - 81*(n-2)*(n-1)*(2*n - 3)*(5*n - 12)*(5*n - 3)*(5*n - 2)*(1020*n^4 - 8088*n^3 + 21761*n^2 - 22557*n + 7264)*a(n-3) - 729*(n-3)*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(4*n - 1)*(5*n - 17)*(5*n - 8)*(5*n - 7)*(5*n - 2)*a(n-4) + 6561*(n-4)*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(5*n - 12)*(5*n - 7)*(5*n - 3)*(5*n - 2)*a(n-5). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(9x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016

A272391 Degeneracies of entanglement witness eigenstates for 2n spin 5/2 irreducible representations.

Original entry on oeis.org

1, 1, 6, 111, 2666, 70146, 1949156, 56267133, 1670963202, 50720602314, 1566629938776, 49080774275121, 1555873464248076, 49814409137161480, 1608523756282054800, 52323002586904505427, 1712956041168844662002
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, this sequence, A264608, A272392, A272393, A272394, A272395.

Programs

  • Mathematica
    a[n_] := 2/Pi * 2^(2 * n) * Integrate[Sqrt[1 - t] * ((4 * t - 1)(4 * t - 3))^(2 * n) * Sqrt[t]^(2 * n - 1), {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
    a[n_] := c[0, 2 n, 5/2] - c[1, 2 n, 5/2]; c[j_, n_, s_]:= Sum[(-1)^k * Binomial[n, k] * Binomial[j - (2 * s + 1) * k + n + n * s - 1, j - (2 * s + 1) * k + n * s], {k, 0, Min[n, Floor[(j + n * s)/(2 * s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 34; S = 5/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) ~ (6*sqrt(210)/1225)*6^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-123/(280n)+O(1/n^2)). - Thomas Curtright, Jun 17 2016, updated Jul 26 2016
Recurrence: 5*n*(5*n - 8)*(5*n - 3)*(5*n - 2)*(5*n - 1)*(5*n + 1)*(7*n - 16)*(7*n - 10)*(7*n - 9)*a(n) = 6*(2*n - 1)*(5*n - 8)*(7*n - 16)*(499359*n^6 - 2314137*n^5 + 4264709*n^4 - 3984323*n^3 + 1983172*n^2 - 496780*n + 48720)*a(n-1) - 864*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 2)*(25480*n^5 - 160398*n^4 + 375142*n^3 - 401079*n^2 + 192819*n - 33500)*a(n-2) + 31104*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(5*n - 3)*(7*n - 9)*(7*n - 3)*(7*n - 2)*a(n-3). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(6x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016

A272392 Degeneracies of entanglement witness eigenstates for 2n spin 7/2 irreducible representations.

Original entry on oeis.org

1, 1, 8, 260, 11096, 518498, 25593128, 1312660700, 69270071480, 3736677346685, 205125498479384, 11421904528488264, 643564228586076344, 36624864117451994600, 2102142593641513473240, 121548403269918189484872, 7073453049221266117909752, 413976401197504361048673896
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, this sequence, A272393, A272394, A272395.

Programs

  • Mathematica
    a[n_]:= c[0, 2*n, 7/2]-c[1, 2*n, 7/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 44; S = 7/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016

Formula

a(n) ~ (2*sqrt(42)/441)*8^(2*n)/(sqrt(Pi)*(2*n)^(3/2)) * (1-23/(56*n)+O(1/n^2)). - Thomas Curtright and Cosmas Zachos, Jun 17 2016, updated Jul 26 2016
Recurrence: 7*n*(3*n - 7)*(3*n - 4)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(7*n - 5)*(7*n - 4)*(7*n - 3)*(7*n - 2)*(7*n - 1)*(7*n + 1)*(9*n - 29)*(9*n - 20)*(9*n - 13)*(9*n - 11)*a(n) = 32*(2*n - 1)*(3*n - 7)*(7*n - 19)*(7*n - 12)*(7*n - 11)*(9*n - 29)*(9*n - 20)*(218437803*n^9 - 1510747767*n^8 + 4498401903*n^7 - 7551222032*n^6 + 7855986297*n^5 - 5239178603*n^4 + 2233354977*n^3 - 584916638*n^2 + 85090380*n - 5216400)*a(n-1) - 6144*(n-1)*(2*n - 3)*(2*n - 1)*(7*n - 19)*(9*n - 29)*(9*n - 2)*(460622295*n^10 - 5800755303*n^9 + 31804940376*n^8 - 99676215732*n^7 + 197077947989*n^6 - 255958437117*n^5 + 220361564054*n^4 - 123775781978*n^3 + 43301190686*n^2 - 8505466270*n + 711711000)*a(n-2) + 262144*(n-2)*(n-1)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 1)*(7*n - 5)*(9*n - 11)*(9*n - 2)*(2988657*n^7 - 36693972*n^6 + 183168228*n^5 - 477680566*n^4 + 695101884*n^3 - 556549424*n^2 + 223584828*n - 34734735)*a(n-3) - 16777216*(n-3)*(n-2)*(n-1)*(2*n - 7)*(2*n - 5)*(2*n - 3)*(2*n - 1)*(3*n - 4)*(3*n - 1)*(7*n - 12)*(7*n - 5)*(7*n - 4)*(9*n - 20)*(9*n - 11)*(9*n - 4)*(9*n - 2)*a(n-4). - Vaclav Kotesovec, Jun 24 2016
a(n) = (1/Pi)*int((sin(8x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016

A272394 Degeneracies of entanglement witness eigenstates for 2n spin 9/2 irreducible representations.

Original entry on oeis.org

1, 1, 10, 505, 33670, 2457190, 189442252, 15177798415, 1251216059950, 105443928375598, 9043123211156440, 786701771691580227, 69253844083218535300, 6157639918607211895000, 552193624489443516667344, 49885368826043082235592687
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, this sequence, A272395.

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(4t)^n*((16t^2-20t+5)((4t-1)^2-4t))^(2n), {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, 2 n, 9/2]-c[1, 2 n, 9/2]
    c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}] (* Thomas Curtright, Jul 26 2016 *)
  • PARI
    N = 33; S = 9/2;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))

Formula

a(n) = (1/Pi)*int((sin(10x)/sin(x))^(2n)*(sin(x))^2,x,0,2 Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (2*sqrt(66)/1089)*10^(2n)/(sqrt(Pi)*(2n)^(3/2))(1-35/(88n) + O(1/n^2)). - Thomas Curtright, Jul 26 2016

A272395 Degeneracies of entanglement witness eigenstates for n spin 5 irreducible representations.

Original entry on oeis.org

1, 0, 1, 1, 11, 76, 671, 5916, 54131, 504316, 4779291, 45898975, 445798221, 4371237794, 43213522209, 430241859971, 4310236148075, 43417944574136, 439495074016427, 4468208369691396, 45605656313488271, 467140985042718910
Offset: 0

Views

Author

Gheorghe Coserea, Apr 28 2016

Keywords

Comments

The Mathematica formula for a(n) as the difference of two generalized binomial coefficients is adapted from the Appendix of the Mendonça link. - Thomas Curtright, Jul 27 2016

Crossrefs

For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get A000108, A005043, A264607, A007043, A272391, A264608, A272392, A272393, A272394, this sequence.

Programs

  • Mathematica
    a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(1024t^5-2304t^4+1792t^3-560t^2 +60t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
    a[n_]:= c[0, n, 5]-c[1, n, 5]
    c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Floor[(j + n*s)/(2*s + 1)]}] (* Thomas Curtright, Jul 26 2016 *)
    a[n_]:= mult[0, n, 5]
    mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
  • PARI
    N = 22; S = 5;
    M = matrix(N+1, N*numerator(S)+1);
    Mget(n, j) =  { M[1 + n, 1 + j*denominator(S)] };
    Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
    Minit() = {
      my(step = 1/denominator(S));
      Mset(0, 0, 1);
      for (n = 1, N, forstep (j = 0, n*S, step,
         my(acc = 0);
         for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
         Mset(n, j, acc)));
    };
    Minit();
    vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
    
  • PARI
    c(j, n) = sum(k=0, min((j + 5*n)\11, n), (-1)^k*binomial(n, k)*binomial(j - 11*k + n + 5*n - 1, j - 11*k + n*5))
    a(n)=c(0, n)-c(1, n) \\ Charles R Greathouse IV, Jul 28 2016; adapted from Curtright's Mathematica code

Formula

a(n)=(1/Pi)*int((sin(11x)/sin(x))^n*(sin(x))^2,x,0,2Pi). - Thomas Curtright, Jun 24 2016
a(n) ~ (1/20)^(3/2)*11^n/(sqrt(Pi)*n^(3/2))(1-63/(80n)+O(1/n^2)). - Thomas Curtright, Jul 26 2016

A349934 Array read by ascending antidiagonals: A(n, s) is the n-th s-Catalan number.

Original entry on oeis.org

1, 2, 1, 5, 3, 1, 14, 15, 4, 1, 42, 91, 34, 5, 1, 132, 603, 364, 65, 6, 1, 429, 4213, 4269, 1085, 111, 7, 1, 1430, 30537, 52844, 19845, 2666, 175, 8, 1, 4862, 227475, 679172, 383251, 70146, 5719, 260, 9, 1, 16796, 1730787, 8976188, 7687615, 1949156, 204687, 11096, 369, 10, 1
Offset: 1

Views

Author

Stefano Spezia, Dec 06 2021

Keywords

Examples

			The array begins:
n\s |  1    2     3      4      5
----+----------------------------
  1 |  1    1     1      1      1 ...
  2 |  2    3     4      5      6 ...
  3 |  5   15    34     65    111 ...
  4 | 14   91   364   1085   2666 ...
  5 | 42  603  4269  19845  70146 ...
  ...
		

Crossrefs

Cf. A000012 (n=1), A220892 (n=4).
Cf. A000108 (s=1), A099251 (s=2), A264607 (s=3).
Cf. A349933.

Programs

  • Mathematica
    T[n_,k_,s_]:=If[k==0,1,Coefficient[(Sum[x^i,{i,0,s}])^n,x^k]]; A[n_,s_]:=T[2n,s n,s]-T[2n,s n+1,s]; Flatten[Table[A[n-s+1,s],{n,10},{s,n}]]
  • PARI
    T(n, k, s) = polcoef((sum(i=0, s, x^i))^n, k);
    A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s); \\ Michel Marcus, Dec 10 2021

Formula

A(n, s) = T(2*n, s*n, s) - T(2*n, s*n+1, s), where T(n, k, s) is the s-binomial coefficient defined as the coefficient of x^k in (Sum_{i=0..s} x^i)^n.
A(2, n) = A000027(n+1).
A(3, n) = A006003(n+1).
Showing 1-7 of 7 results.