A264607
Degeneracies of entanglement witness eigenstates for spin 3/2 particles.
Original entry on oeis.org
1, 1, 4, 34, 364, 4269, 52844, 679172, 8976188, 121223668, 1665558544, 23207619274, 327167316436, 4657884819670, 66875794530120, 967202289590280, 14077773784645980, 206058395118133932, 3031188276557963312, 44789055557553810152
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Hacène Belbachir, Oussama Igueroufa, Combinatorial interpretation of bisnomial coefficients and Generalized Catalan numbers, Proceedings of the 1st International Conference on Algebras, Graphs and Ordered Sets (ALGOS 2020), hal-02918958 [math.cs], 47-54.
- Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043, this sequence,
A007043,
A272391,
A264608,
A272392,
A272393,
A272394,
A272395.
-
a[n_]:= 2/Pi*4^(2*n)*Integrate[Sqrt[1-t]*(2*t-1)^(2*n)*Sqrt[t]^(2*n-1),{t,0,1}] (* Thomas Curtright, Jun 22 2016 *)
a[n_]:= c[0, 2 n, 3/2]-c[1, 2 n, 3/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
Table[CatalanNumber[3 n]Hypergeometric2F1[-1-3n,-2n,1/2-3n,1/2],{n,0,20}] (* Benedict W. J. Irwin, Sep 27 2016 *)
-
N = 44; S = 3/2;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
A264608
Degeneracies of entanglement witness eigenstates for spin 3 particles.
Original entry on oeis.org
1, 0, 1, 1, 7, 31, 175, 981, 5719, 33922, 204687, 1251460, 7737807, 48297536, 303922983, 1926038492, 12281450455, 78741558512, 507301771543, 3282586312161, 21323849229781, 139012437340660, 909161626641121, 5963576112550771, 39223341189188339, 258619428254117476, 1709124801693650075
Offset: 0
A(x) = 1 + x^2 + x^3 + 7*x^4 + 31*x^5 + 175*x^6 + 981*x^7 + ...
- Gheorghe Coserea, Table of n, a(n) for n = 0..401
- Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, arXiv:1607.05849 [hep-th], 2016.
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043,
A264607,
A007043,
A272391, this sequence,
A272392,
A272393,
A272394,
A272395.
-
a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(64t^3-80t^2+24t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 23 2016 *)
a[n_]:= c[0, n, 3]-c[1, n, 3]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
a[n_]:= mult[0, n, 3]; mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
-
N = 26; S = 3;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
-
seq(N) = {
my(a = vector(N), s); a[2]=1; a[3]=1; a[4]=7; a[5]=31;
for (n=6, N, s = ((n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*(37*n - 38)*a[n-1] + 7*(n-1)*(2*n - 3)*(3*n - 1)*(92*n^3 - 404*n^2 + 509*n - 150)*a[n-2] - 49*(n-2)*(n-1)*(2*n - 5)*(2*n - 1)*(3*n - 4)*(4*n - 3)*a[n-3] - 343*(n-3)*(n-2)*(n-1)*(2*n - 3)*(2*n - 1)*(3*n - 1)*a[n-4]);
a[n] = s/(3*n*(2*n - 5)*(2*n - 3)*(3*n - 4)*(3*n - 1)*(3*n + 1)));
concat(1,a);
};
seq(26) \\ Gheorghe Coserea, Aug 07 2018
A272393
Degeneracies of entanglement witness eigenstates for n spin 4 irreducible representations.
Original entry on oeis.org
1, 0, 1, 1, 9, 51, 369, 2661, 19929, 151936, 1178289, 9259812, 73593729, 590475744, 4776464121, 38912018796, 318971849625, 2629040965776, 21774894337449, 181136924953317, 1512731101731499, 12678230972826340, 106600213003114719
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..401
- Eliahu Cohen, Tobias Hansen, and Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043,
A264607,
A007043,
A272391,
A264608,
A272392, this sequence,
A272394,
A272395.
-
a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*((4t-1)(4t(4t-3)^2-1))^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
a[n_]:= c[0, n, 4]-c[1, n, 4]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Floor[(j + n*s)/(2*s + 1)]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
a[n_]:= mult[0, n, 4]
mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
-
N = 26; S = 4;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
A272392
Degeneracies of entanglement witness eigenstates for 2n spin 7/2 irreducible representations.
Original entry on oeis.org
1, 1, 8, 260, 11096, 518498, 25593128, 1312660700, 69270071480, 3736677346685, 205125498479384, 11421904528488264, 643564228586076344, 36624864117451994600, 2102142593641513473240, 121548403269918189484872, 7073453049221266117909752, 413976401197504361048673896
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043,
A264607,
A007043,
A272391,
A264608, this sequence,
A272393,
A272394,
A272395.
-
a[n_]:= c[0, 2*n, 7/2]-c[1, 2*n, 7/2]; c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s], {k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}]; Table[a[n], {n, 0, 20}] (* Thomas Curtright, Jul 26 2016 *)
-
N = 44; S = 7/2;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0)) \\ Gheorghe Coserea, Apr 28 2016
A272394
Degeneracies of entanglement witness eigenstates for 2n spin 9/2 irreducible representations.
Original entry on oeis.org
1, 1, 10, 505, 33670, 2457190, 189442252, 15177798415, 1251216059950, 105443928375598, 9043123211156440, 786701771691580227, 69253844083218535300, 6157639918607211895000, 552193624489443516667344, 49885368826043082235592687
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..200
- Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
- Vaclav Kotesovec, Recurrence (of order 5)
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043,
A264607,
A007043,
A272391,
A264608,
A272392,
A272393, this sequence,
A272395.
-
a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(4t)^n*((16t^2-20t+5)((4t-1)^2-4t))^(2n), {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
a[n_]:= c[0, 2 n, 9/2]-c[1, 2 n, 9/2]
c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Min[n, Floor[(j + n*s)/(2*s + 1)]]}] (* Thomas Curtright, Jul 26 2016 *)
-
N = 33; S = 9/2;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
A272395
Degeneracies of entanglement witness eigenstates for n spin 5 irreducible representations.
Original entry on oeis.org
1, 0, 1, 1, 11, 76, 671, 5916, 54131, 504316, 4779291, 45898975, 445798221, 4371237794, 43213522209, 430241859971, 4310236148075, 43417944574136, 439495074016427, 4468208369691396, 45605656313488271, 467140985042718910
Offset: 0
- Gheorghe Coserea, Table of n, a(n) for n = 0..401
- Eliahu Cohen, Tobias Hansen, Nissan Itzhaki, From Entanglement Witness to Generalized Catalan Numbers, arXiv:1511.06623 [quant-ph], 2015.
- T. L. Curtright, T. S. Van Kortryk, and C. K. Zachos, Spin Multiplicities, hal-01345527, 2016.
- Vaclav Kotesovec, Recurrence (of order 6)
- J. R. G. Mendonça, Exact eigenspectrum of the symmetric simple exclusion process on the complete, complete bipartite and related graphs, Journal of Physics A: Mathematical and Theoretical 46:29 (2013) 295001. arXiv:1207.4106 [cond-mat.stat-mech], 2012-2013.
For spin S = 1/2, 1, 3/2, 2, 5/2, 3, 7/2, 4, 9/2, 5 we get
A000108,
A005043,
A264607,
A007043,
A272391,
A264608,
A272392,
A272393,
A272394, this sequence.
-
a[n_]:= 2/Pi*Integrate[Sqrt[(1-t)/t]*(1024t^5-2304t^4+1792t^3-560t^2 +60t-1)^n, {t, 0, 1}] (* Thomas Curtright, Jun 24 2016 *)
a[n_]:= c[0, n, 5]-c[1, n, 5]
c[j_, n_, s_]:= Sum[(-1)^k*Binomial[n, k]*Binomial[j - (2*s + 1)*k + n + n*s - 1, j - (2*s + 1)*k + n*s],{k, 0, Floor[(j + n*s)/(2*s + 1)]}] (* Thomas Curtright, Jul 26 2016 *)
a[n_]:= mult[0, n, 5]
mult[j_,n_,s_]:=Sum[(-1)^(k+1)*Binomial[n,k]*Binomial[n*s+j-(2*s+1)*k+n- 1,n*s+j-(2*s+1)*k+1],{k,0,Floor[(n*s+j+1)/(2*s+1)]}] (* Thomas Curtright, Jun 14 2017 *)
-
N = 22; S = 5;
M = matrix(N+1, N*numerator(S)+1);
Mget(n, j) = { M[1 + n, 1 + j*denominator(S)] };
Mset(n, j, v) = { M[1 + n, 1 + j*denominator(S)] = v };
Minit() = {
my(step = 1/denominator(S));
Mset(0, 0, 1);
for (n = 1, N, forstep (j = 0, n*S, step,
my(acc = 0);
for (k = abs(j-S), min(j+S, (n-1)*S), acc += Mget(n-1, k));
Mset(n, j, acc)));
};
Minit();
vector(1 + N\denominator(S), n, Mget((n-1)*denominator(S),0))
-
c(j, n) = sum(k=0, min((j + 5*n)\11, n), (-1)^k*binomial(n, k)*binomial(j - 11*k + n + 5*n - 1, j - 11*k + n*5))
a(n)=c(0, n)-c(1, n) \\ Charles R Greathouse IV, Jul 28 2016; adapted from Curtright's Mathematica code
Showing 1-6 of 6 results.
Comments