A226526 Slowest-growing sequence of semiprimes where 1/(sp+1) sums to 1 without actually reaching it.
4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 69, 1497, 259465, 4852747709, 3429487924785490781, 305153651313989042415043589313598477, 21932475414742921908206321699222250910796483151080020353252738457741771
Offset: 1
Examples
1/(4+1) + 1/(6+1) + 1/(9+1) + … 1/(46+1) + 1/(69+1) is still less than 1. Instead of 1/69, if one were to use any semiprime between 46 and 69, {} the sum would then exceed 1.
Programs
-
Mathematica
semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2 (* For those who have Mmca v or later, you could use PrimeOmega@ n == 2 *) NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextSemiPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}]
Comments