cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Aaron Meyerowitz

Aaron Meyerowitz's wiki page.

Aaron Meyerowitz has authored 6 sequences.

A226526 Slowest-growing sequence of semiprimes where 1/(sp+1) sums to 1 without actually reaching it.

Original entry on oeis.org

4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 35, 38, 39, 46, 69, 1497, 259465, 4852747709, 3429487924785490781, 305153651313989042415043589313598477, 21932475414742921908206321699222250910796483151080020353252738457741771
Offset: 1

Keywords

Comments

The semiprime analogous to A181503.
Because the semiprimes are sparser than the primes in the beginning, the sequence contains more of the lesser semiprimes than the analogous sequence of primes. In fact, one has to get to the seventeenth semiprime before it, 49,is not present, whereas in A181503, one only has to get to the sixth prime before it, 13, is not present.
If you change 1/(a(n)+1) to simply 1/a(n) the sequence becomes: 4, 6, 9, 10, 14, 15, 21, 22, 25, 26, 33, 34, 355, 16627, 76723511, 17218740226618333, 374886275842473712491638217368219, 9036922116709843444667289331349853231276337589593114741410804131,....

Examples

			1/(4+1) + 1/(6+1) + 1/(9+1) + … 1/(46+1) + 1/(69+1) is still less than 1. Instead of 1/69, if one were to use any semiprime between 46 and 69, {} the sum would then exceed 1.
		

Crossrefs

Programs

  • Mathematica
    semiPrimeQ[n_] := Plus @@ Last /@ FactorInteger@ n == 2 (* For those who have Mmca v or later, you could use PrimeOmega@ n == 2 *) NextSemiPrime[n_, k_: 1] := Block[{c = 0, sgn = Sign[k]}, sp = n + sgn; While[c < Abs[k], While[ PrimeOmega[sp] != 2, If[sgn < 0, sp--, sp++]]; If[sgn < 0, sp--, sp++]; c++]; sp + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextSemiPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}]

A226527 Slowest-growing sequence of 3-almost primes (trientprimes) where 1/(tp+1) sums to 1 without actually reaching it.

Original entry on oeis.org

8, 12, 18, 20, 27, 28, 30, 42, 44, 45, 50, 52, 63, 66, 68, 70, 75, 76, 78, 92, 98, 99, 102, 105, 110, 114, 116, 117, 124, 125, 130, 138, 147, 148, 153, 154, 164, 165, 170, 171, 172, 174, 175, 182, 186, 188, 190, 195, 207, 212, 222, 230, 231, 236, 238, 242, 244, 245, 246, 255, 258, 261, 266, 268, 273, 275, 279, 282, 284, 285, 286, 290, 292, 310, 316, 318, 322, 325, 332, 333, 338, 343, 345, 354, 356, 357, 363, 366, 369, 370, 374, 385, 387, 388, 399, 402, 404, 406, 410, 412, 418, 423, 425, 426, 428, 429, 430, 434, 435, 436, 8662, 44335708, 1251938572491943, 1505273212784203338150808798466, 680617602541158152398258079780439819108542271775727566330763
Offset: 1

Keywords

Comments

See comments in A226526.
Deviates from A014612 after the 110th term.

Crossrefs

Programs

  • Mathematica
    kAlmostPrimeQ[n_, k_: 2] := Plus @@ Last /@ FactorInteger@ n == k (* For those who have Mmca v or later, you could use PrimeOmega@ n == k *) NextkAlmostPrime[n_, k_: 2, m_: 1] := Block[{c = 0, sgn = Sign[m]}, kap = n + sgn; While[c < Abs[m], While[ PrimeOmega[kap] != k, If[sgn < 0, kap--, kap++]]; If[ sgn < 0, kap--, kap++]; c++]; kap + If[sgn < 0, 1, -1]]; a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextkAlmostPrime[ Max[a[n - 1], Floor[1/(1 - sm)]]]]; a[0] = 1; Do[ Print[{n, a[n] // Timing}], {n, 25}]

A190591 The coefficient of t^n in the power series solution of u in the equation -t+(1-t+t^2+t^3)*u-(t+t^4)*u^2+(t^3+t^5)*u^3-t^4*u^4=0.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 4, 7, 12, 23, 47, 96, 195, 402, 843, 1781, 3772, 8020, 17143, 36810, 79304, 171368, 371450, 807516, 1760145, 3845770, 8421528, 18480552, 40634154, 89507024, 197496651, 436469232, 966043263, 2141158866, 4751978668
Offset: 0

Author

This sequence was derived by Dr. Aaron Meyerowitz and submitted by Shanzhen Gao, May 13 2011

Keywords

Programs

  • Maple
    s:= solve(-t+(1-t+t^2+t^3)*u-(t+t^4)*u^2+(t^3+t^5)*u^3-t^4*u^4, u):
    a:= n-> coeff(series(s, t, n+1), t, n):
    seq(a(n), n=0..40);  # Alois P. Heinz, Jun 03 2011

A181503 Slowest-growing sequence of primes p where 1/(p+1) sums to 1 without actually reaching it.

Original entry on oeis.org

2, 3, 5, 7, 11, 29, 127, 1931, 309121, 47777896349, 76090912606600214447, 120621395443859821620817698234224534627, 63813688766771960235613705494151343867425896610637722399417500492543759703
Offset: 1

Author

Aaron Meyerowitz, Oct 24 2010

Keywords

Comments

The sum of 1/(p+1) over p = 2, 3, 5, 7, 11, 23 = A046689 is exactly 1.

Crossrefs

Similar to A075442. See also A046689.

Programs

  • Mathematica
    a[n_] := a[n] = Block[{sm = Sum[1/(a[i] + 1), {i, n - 1}]}, NextPrime[ Max[ a[n - 1], 1/(1 - sm)]]]; a[0] = 1; Array[a, 15] (* Robert G. Wilson v, Oct 27 2010 *)

Extensions

a(12) onwards from Robert G. Wilson v, Oct 27 2010

A177794 G.f. A satisfies -x+(1+x^3-x)*A+(x^4-x^2)*A^2+(x^5-x^3)*A^3-x^4*A^4 = 0.

Original entry on oeis.org

1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 145, 306, 651, 1398, 3026, 6590, 14425, 31720, 70040, 155229, 345193, 770002, 1722487, 3863274, 8685608, 19570860, 44188976, 99965361, 226548082, 514275345, 1169255837, 2662319778, 6070294053, 13858727891, 31678845485
Offset: 1

Author

This sequence was derived by Dr. Aaron Meyerowitz and submitted by Shanzhen Gao, May 13 2010

Keywords

Comments

Used in the enumeration of prudent self-avoiding walks.

Crossrefs

Cf. A178035.

Programs

  • Mathematica
    m = 36; A[_] = 0;
    Do[A[x_] = (x + A[x]^2*x^2 + A[x]^3*x^3 + A[x]^2*(-1 + A[x]^2)*x^4 - A[x]^3*x^5)/(1 - x + x^3) + O[x]^m, {m}];
    CoefficientList[A[x]/x, x] (* Jean-François Alcover, Oct 03 2019 *)
  • PARI
    /* verification */
    V177794=[1, 1, 1, 1, 2, 4, 8, 16, 33, 69, 145];
    A=x*Ser(V177794); /*  = x + x^2 + x^3 + x^4 + 2*x^5 + 4*x^6 + 8*x^7 + ... */
    -x+(1+x^3-x)*A+(x^4-x^2)*A^2+(x^5-x^3)*A^3-x^4*A^4 /* = O(x^12) = "zero" */
    /* Joerg Arndt, May 14 2011 */

A156712 Star numbers (A003154) that are also triangular numbers (A000217).

Original entry on oeis.org

1, 7, 91, 1261, 17557, 244531, 3405871, 47437657, 660721321, 9202660831, 128176530307, 1785268763461, 24865586158141, 346332937450507, 4823795538148951, 67186804596634801, 935791468814738257, 13033893758809700791, 181538721154521072811, 2528508202404485318557
Offset: 1

Author

Aaron Meyerowitz, Feb 14 2009

Keywords

Comments

From Colin Barker, Jan 06 2015: (Start)
Also indices of centered square numbers (A001844) which are also centered triangular numbers (A005448).
Also indices of centered octagonal numbers (A016754) which are also centered hexagonal numbers (A003215).
Also positive integers y in the solutions to 3*x^2-4*y^2-3*x+4*y = 0, the corresponding values of x being A001922.
(End)

Programs

  • Magma
    [(Evaluate(ChebyshevSecond(n+1),7) - 13*Evaluate(ChebyshevU(n), 7) + 1)/2: n in [1..30]]; // G. C. Greubel, Oct 07 2022
    
  • Maple
    f:= gfun[rectoproc]({a(n+3)=15*a(n+2)-15*a(n+1)+a(n),a(1)=1,a(2)=7,a(3)=91},a(n),'remember'):
    seq(f(n), n=1..30); # Robert Israel, Jan 01 2015
  • Mathematica
    f[n_] := (Simplify[(2 + Sqrt@3)^(2 n - 1) + (2 - Sqrt@3)^(2 n - 1)] + 4)/8; Array[f, 17] (* Robert G. Wilson v, Oct 28 2010 *)
  • PARI
    Vec(-x*(x^2-8*x+1)/((x-1)*(x^2-14*x+1)) + O(x^100)) \\ Colin Barker, Jan 01 2015
    
  • SageMath
    def A156712(n): return (1 + chebyshev_U(n, 7) - 13*chebyshev_U(n-1, 7))/2
    [A156712(n) for n in range(1,31)] # G. C. Greubel, Oct 07 2022

Formula

a(n+3) = 15*a(n+2) - 15*a(n+1) + a(n).
If x^2 - 3*y^2 = 1 with x even then a(y) = (y+2)/4 evidently related to A001570 by: add 1 and halve.
G.f.: x*(1 - 8*x + x^2)/((1-x)*(1 - 14*x + x^2)). - Alexander R. Povolotsky, Feb 15 2009
a(n) = (4 + (2 + sqrt(3))*(7 - 4*sqrt(3))^n + (2 - sqrt(3))*(7 + 4*sqrt(3))^n)/8. - Colin Barker, Mar 05 2016
a(n) = (1/2)*( 1 + ChebyshevU(n, 7) - 13*ChebyshevU(n-1, 7) ). - G. C. Greubel, Oct 07 2022

Extensions

a(11) onwards from Robert G. Wilson v, Oct 28 2010