cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 579 results. Next

A058398 Partition triangle A008284 read from right to left.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 5, 5, 4, 1, 1, 1, 2, 3, 5, 6, 7, 4, 1, 1, 1, 2, 3, 5, 7, 9, 8, 5, 1, 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 1, 1, 1, 2, 3, 5, 7, 11, 13, 15, 12, 6, 1, 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 1, 1, 1, 2, 3, 5, 7, 11
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

a(n,m) is the number of partitions of n with n-(m-1) parts or, equivalently, with greatest part n-(m-1).
The columns are the diagonals of triangle A008284. The diagonals are the columns of the partition array p(n,m), n >= 0, m >= 1, with p(n,m) the number of partitions of n in which every part is <= m; p(0,m) := 1. For n >= 1 this array is obtained from table A026820 read as lower triangular array with extension of the rows according to p(n,m)=A000041(n) for m>n.

Examples

			Lower triangular matrix:
  1;
  1,1;
  1,1,1;
  1,1,2,1;
  1,1,2,2,1;
  1,1,2,3,3,1;
  1,1,2,3,4,3,1;
  1,1,2,3,5,5,4,1;
  ...
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
  • M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 27.

Crossrefs

Programs

  • Mathematica
    row[n_] := Table[ IntegerPartitions[n, k] // Length, {k, 0, n}] // Differences // Reverse; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 28 2013 *)

Formula

a(n, m)= A008284(n, n-(m-1)).
a(n, m)= p(m-1, n-m+1), n >= m >= 1 with the p(n, m) array defined in the comment.
a(n, m)=0 if n
Viewed as a square array by antidiagonals, T(n,k) = 0 if n<0; T(n,1) = 1; otherwise T(n,k) = T(n,k-1) + T(n-k,k). - Franklin T. Adams-Watters, Jul 25 2006
Let x be a triangular number C(n,2), where n is the integer being partitioned. Then a(x) = a(x+1) = a(x+2) = 1. Also, a(x+3) = 2 for x>3 and a(x-1) = floor(n/2). - Allan Bickle, Apr 18 2024

A038498 Matrix inverse of partition triangle A008284.

Original entry on oeis.org

1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, 0, -1, -1, 1, -1, 0, 2, 0, 0, -1, -1, 1, 0, -1, 0, 2, 0, 0, -1, -1, 1, 0, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, -2, -1, 1, 1, 1, 0, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, 1, 0, 0, -1, -1, 1
Offset: 1

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Since A008284 has only ones in its first column, the sum of terms for any row n > 1 is 0. - François Marques, Feb 09 2021

Examples

			Triangle begins:
  1;
  -1,1;
  0,-1,1;
  1,-1,-1,1;
  ...
		

Crossrefs

Programs

  • PARI
    tp(n, k) = if (n<1, 0, if (k<1, 0, if (k == n, 1, if (k > n, 0, tp(n-1, k-1) + tp(n-k, k)))));
    tabl(nn) = {mtp = matrix(nn, nn, n, k, tp(n, k)); mtpi = mtp^(-1); for (n = 1, nn, for (k = 1, n, print1(mtpi[n, k], ", ");); print(););} \\ Michel Marcus, Mar 04 2014

Formula

T(n,n-k) = A010815(k) for k <= n/2. - François Marques, Feb 09 2021

A055884 Euler transform of partition triangle A008284.

Original entry on oeis.org

1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1

Author

Christian G. Bower, Jun 09 2000

Keywords

Comments

Number of multiset partitions of length-k integer partitions of n. - Gus Wiseman, Nov 09 2018

Examples

			From _Gus Wiseman_, Nov 09 2018: (Start)
Triangle begins:
   1
   1   2
   1   2   3
   1   4   4   5
   1   4   8   7   7
   1   6  12  16  12  11
   1   6  17  25  28  19  15
   1   8  22  43  49  48  30  22
   1   8  30  58  87  88  77  45  30
   ...
The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions:
  {{5}}   {{1,4}}     {{1,1,3}}       {{1,1,1,2}}         {{1,1,1,1,1}}
          {{2,3}}     {{1,2,2}}      {{1},{1,1,2}}       {{1},{1,1,1,1}}
         {{1},{4}}   {{1},{1,3}}     {{1,1},{1,2}}       {{1,1},{1,1,1}}
         {{2},{3}}   {{1},{2,2}}     {{2},{1,1,1}}      {{1},{1},{1,1,1}}
                     {{2},{1,2}}    {{1},{1},{1,2}}     {{1},{1,1},{1,1}}
                     {{3},{1,1}}    {{1},{2},{1,1}}    {{1},{1},{1},{1,1}}
                    {{1},{1},{3}}  {{1},{1},{1},{2}}  {{1},{1},{1},{1},{1}}
                    {{1},{2},{2}}
(End)
		

Crossrefs

Row sums give A001970.
Main diagonal gives A000041.
Columns k=1-2 give: A057427, A052928.
T(n+2,n+1) gives A000070.
T(2n,n) gives A360468.

Programs

  • Maple
    h:= proc(n, i) option remember; expand(`if`(n=0, 1,
          `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i)))))
        end:
    g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add(
          g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j))))
        end:
    b:= proc(n, i) option remember; expand(`if`(n=0, 1,
         `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i))))
        end:
    T:= (n, k)-> coeff(b(n$2), x, k):
    seq(seq(T(n,k), k=1..n), n=1..12);  # Alois P. Heinz, Feb 17 2023
  • Mathematica
    sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}];
    mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]];
    Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)

A058399 Triangle of partial row sums of partition triangle A008284.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

T(n,m) is also the number of m-th largest elements in all partitions of n. - Omar E. Pol, Feb 14 2012
It appears that reversed rows converge to A000070. - Omar E. Pol, Mar 10 2012
The row sums give A006128. - Omar E. Pol, Mar 26 2012
T(n,m) is also the number of regions traversed by the m-th column of the section model of partitions with n sections (Cf. A135010, A206437). - Omar E. Pol, Apr 20 2012

Examples

			From _Omar E. Pol_, Mar 10 2012: (Start)
Triangle begins:
   1;
   2,  1;
   3,  2,  1;
   5,  4,  2,  1;
   7,  6,  4,  2,  1;
  11, 10,  7,  4,  2,  1;
  15, 14, 11,  7,  4,  2,  1;
  22, 21, 17, 12,  7,  4,  2,  1;
  30, 29, 25, 18, 12,  7,  4,  2,  1;
  42, 41, 36, 28, 19, 12,  7,  4,  2,  1;
  56, 55, 50, 40, 29, 19, 12,  7,  4,  2,  1;
  77, 76, 70, 58, 43, 30, 19, 12,  7,  4,  2,  1;
(End)
		

Crossrefs

Columns 1-5: A000041(n), A000065(n+1), A004250(n+2), A035300(n-1), A035301(n-1), n >= 1.
Cf. A008284.

Programs

  • Maple
    b:= proc(n, k) option remember;
          `if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k)))
        end:
    T:= (n, m)-> b(n,n) -b(n,m-1):
    seq (seq (T(n, m), m=1..n), n=1..15);  # Alois P. Heinz, Apr 20 2012
  • Mathematica
    t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)

Formula

T(n, m) = Sum_{k=m..n} A008284(n, k).
G.f. for m-th column: Sum_{n>=1} x^(n)/Product_{k=1..n+m-1} (1 - x^k).
T(n, m) = Sum_{k=1..n} A207379(k, m). - Omar E. Pol, Apr 22 2012

A038497 Matrix square of partition triangle A008284.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 7, 8, 5, 2, 1, 11, 15, 10, 5, 2, 1, 15, 23, 18, 10, 5, 2, 1, 22, 38, 31, 20, 10, 5, 2, 1, 30, 56, 52, 34, 20, 10, 5, 2, 1, 42, 86, 83, 60, 36, 20, 10, 5, 2, 1, 56, 123, 129, 97, 63, 36, 20, 10, 5, 2, 1, 77, 181, 198, 158, 105, 65, 36, 20, 10, 5, 2, 1
Offset: 1

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Row sums form A022811 (number of terms in n-th derivative of a function composed with itself 3 times). - Paul D. Hanna, Jul 13 2004

Examples

			1; 2,1; 3,2,1; 5,5,2,1; ...
		

Crossrefs

Cf. A038498, A039800-A039809. a(n, 1) = A000041(n) (first column) (partition numbers).
Cf. A022811.

A039805 Matrix cube of partition triangle A008284.

Original entry on oeis.org

1, 3, 1, 6, 3, 1, 13, 9, 3, 1, 23, 19, 9, 3, 1, 44, 42, 22, 9, 3, 1, 74, 80, 48, 22, 9, 3, 1, 129, 154, 99, 51, 22, 9, 3, 1, 210, 273, 193, 105, 51, 22, 9, 3, 1, 345, 484, 362, 212, 108, 51, 22, 9, 3, 1, 542, 815, 651, 401, 218, 108, 51, 22, 9, 3, 1, 858, 1369, 1147
Offset: 1

Author

Christian G. Bower, Feb 15 1999

Keywords

Comments

Row sums form A022812 (number of terms in n-th derivative of a function composed with itself 4 times). - Paul D. Hanna, Jul 13 2004

Examples

			1; 3,1; 6,3,1; 13,9,3,1; ...
		

Crossrefs

Cf. A038497, A038498, A039806, A039807. a(n, 1) = A022811(n) (first column).
Cf. A022812.

A327029 T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n.

Original entry on oeis.org

1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 12, 17, 19, 19, 14, 12, 7, 5, 3, 2, 1, 1
Offset: 0

Author

Peter Luschny, Aug 24 2019

Keywords

Comments

Dirichlet convolution of phi(n) and A008284(n,k) for n >= 1. - Richard L. Ollerton, May 07 2021

Examples

			Triangle starts:
[0] [1]
[1] [0, 1]
[2] [0, 2, 1]
[3] [0, 3, 1, 1]
[4] [0, 4, 3, 1, 1]
[5] [0, 5, 2, 2, 1, 1]
[6] [0, 6, 6, 4, 2, 1, 1]
[7] [0, 7, 3, 4, 3, 2, 1, 1]
[8] [0, 8, 8, 6, 6, 3, 2, 1, 1]
[9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1]
		

Crossrefs

Cf. A008284, A000010, A078392 (row sums), A282750.
Cf. A000041 (where reversed rows converge to).
T(2n,n) gives A052810.

Programs

  • SageMath
    def DivisorTriangle(f, T, Len, w = None):
        D = [[1]]
        for n in (1..Len-1):
            r = lambda k: [f(d)*T(n//d,k) for d in divisors(n)]
            L = [sum(r(k)) for k in (0..n)]
            if w != None: L = [*map(lambda v: v * w(n), L)]
            D.append(L)
        return D
    DivisorTriangle(euler_phi, A008284, 10)

Formula

From Richard L. Ollerton, May 07 2021: (Start)
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(gcd(n,i),k).
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(n/gcd(n,i),k)*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)

A039807 Matrix 5th power of partition triangle A008284.

Original entry on oeis.org

1, 5, 1, 15, 5, 1, 45, 20, 5, 1, 110, 60, 20, 5, 1, 271, 170, 65, 20, 5, 1, 599, 426, 185, 65, 20, 5, 1, 1309, 1025, 486, 190, 65, 20, 5, 1, 2690, 2299, 1185, 501, 190, 65, 20, 5, 1, 5436, 4999, 2750, 1245, 506, 190, 65, 20, 5, 1, 10545, 10380, 6069, 2910, 1260
Offset: 0

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			1; 5,1; 15,5,1; 45,20,5,1; ...
		

Crossrefs

Cf. A038497, A038498, A039805, A039806. a(n, 1) = A022813(n) (first column).

A050304 Matrix 10th power of partition triangle A008284.

Original entry on oeis.org

1, 10, 1, 55, 10, 1, 265, 65, 10, 1, 1045, 320, 65, 10, 1, 3817, 1365, 330, 65, 10, 1, 12583, 5127, 1420, 330, 65, 10, 1, 39148, 17710, 5447, 1430, 330, 65, 10, 1, 114235, 56638, 19030, 5502, 1430, 330, 65, 10, 1, 318857, 170993, 61865, 19350, 5512
Offset: 1

Author

Christian G. Bower, Aug 15 1999

Keywords

Examples

			1; 10,1; 55,10,1; 265,65,10,1; ...
		

Crossrefs

Cf. A038497, A038498, A039805-A039807. A050300-A050303. a(n, 1) = A024210(n) (first column).

A039809 For n > 1, a(n) doubles under the transform T, where Ta is the matrix product of partition triangle A008284 with a, with a(1) = 1.

Original entry on oeis.org

1, 1, 2, 5, 12, 32, 83, 223, 594, 1600, 4297, 11589, 31216, 84212, 227091, 612712, 1652913, 4459962, 12033405, 32469682, 87611105, 236402465, 637884103, 1721218224, 4644392797, 12532091909, 33815653370, 91245738923
Offset: 1

Author

Christian G. Bower, Feb 15 1999

Keywords

Examples

			So a(7) = T(7,1)*a(1) + T(7,2)*a(2) + ... + T(7,6)*a(6) = 1*1 + 3*1 + 4*2 + 3*5 + 2*12 + 1*32 = 1 + 3 + 8 + 15 + 24 + 32 = 83, where T(n,k) = A008284(n,k).
		

Crossrefs

Programs

  • PARI
    P(n, k) = #partitions(n-k, k); /* A008284 */
    lista(nn) = {my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = sum(i=1, n-1, P(n,i)*a[i])); a;} \\ Petros Hadjicostas, May 30 2020

Formula

a(1) = 1 and a(n) = Sum_{i=1..n-1} A008284(n, i)*a(i) for n >= 2 (because 2*a(n) = Sum_{i=1..n} A008284(n,i)*a(i) for n >= 2).
a(n+1) = Sum_{k=0..n} A081719(n,k). - Philippe Deléham, Sep 30 2006
G.f.: (1/2) * ( x + Sum_{n>=1} a(n) * x^n / Product_{j=1..n} (1 - x^j) ). - Ilya Gutkovskiy, Jul 22 2021

Extensions

Various sections edited by Petros Hadjicostas, May 30 2020
Showing 1-10 of 579 results. Next