A058398 Partition triangle A008284 read from right to left.
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 2, 3, 3, 1, 1, 1, 2, 3, 4, 3, 1, 1, 1, 2, 3, 5, 5, 4, 1, 1, 1, 2, 3, 5, 6, 7, 4, 1, 1, 1, 2, 3, 5, 7, 9, 8, 5, 1, 1, 1, 2, 3, 5, 7, 10, 11, 10, 5, 1, 1, 1, 2, 3, 5, 7, 11, 13, 15, 12, 6, 1, 1, 1, 2, 3, 5, 7, 11, 14, 18, 18, 14, 6, 1, 1, 1, 2, 3, 5, 7, 11
Offset: 1
Examples
Lower triangular matrix: 1; 1,1; 1,1,1; 1,1,2,1; 1,1,2,2,1; 1,1,2,3,3,1; 1,1,2,3,4,3,1; 1,1,2,3,5,5,4,1; ...
References
- L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
- M. Kauers and P. Paule, The Concrete Tetrahedron, Springer 2011, p. 27.
Links
- Seiichi Manyama, Rows n = 1..140, flattened
- Henry Bottomley, Illustration of initial terms
- Roser Homs and Anna-Lena Winz, Deformations of local Artin rings via Hilbert-Burch matrices, arXiv:2309.06871 [math.AC], 2023. See p. 16.
Programs
-
Mathematica
row[n_] := Table[ IntegerPartitions[n, k] // Length, {k, 0, n}] // Differences // Reverse; Table[row[n], {n, 1, 14}] // Flatten (* Jean-François Alcover, Feb 28 2013 *)
Formula
a(n, m)= A008284(n, n-(m-1)).
a(n, m)= p(m-1, n-m+1), n >= m >= 1 with the p(n, m) array defined in the comment.
a(n, m)=0 if n
Viewed as a square array by antidiagonals, T(n,k) = 0 if n<0; T(n,1) = 1; otherwise T(n,k) = T(n,k-1) + T(n-k,k). - Franklin T. Adams-Watters, Jul 25 2006
Let x be a triangular number C(n,2), where n is the integer being partitioned. Then a(x) = a(x+1) = a(x+2) = 1. Also, a(x+3) = 2 for x>3 and a(x-1) = floor(n/2). - Allan Bickle, Apr 18 2024
A038498 Matrix inverse of partition triangle A008284.
1, -1, 1, 0, -1, 1, 1, -1, -1, 1, 0, 1, -1, -1, 1, 0, 1, 0, -1, -1, 1, -1, 1, 1, 0, -1, -1, 1, -1, 0, 2, 0, 0, -1, -1, 1, 0, -1, 0, 2, 0, 0, -1, -1, 1, 0, -2, 1, 1, 1, 0, 0, -1, -1, 1, 1, -2, -1, 1, 1, 1, 0, 0, -1, -1, 1, 1, -1, -2, 0, 2, 0, 1, 0, 0, -1, -1, 1
Offset: 1
Comments
Since A008284 has only ones in its first column, the sum of terms for any row n > 1 is 0. - François Marques, Feb 09 2021
Examples
Triangle begins: 1; -1,1; 0,-1,1; 1,-1,-1,1; ...
Programs
-
PARI
tp(n, k) = if (n<1, 0, if (k<1, 0, if (k == n, 1, if (k > n, 0, tp(n-1, k-1) + tp(n-k, k))))); tabl(nn) = {mtp = matrix(nn, nn, n, k, tp(n, k)); mtpi = mtp^(-1); for (n = 1, nn, for (k = 1, n, print1(mtpi[n, k], ", ");); print(););} \\ Michel Marcus, Mar 04 2014
Formula
T(n,n-k) = A010815(k) for k <= n/2. - François Marques, Feb 09 2021
A055884 Euler transform of partition triangle A008284.
1, 1, 2, 1, 2, 3, 1, 4, 4, 5, 1, 4, 8, 7, 7, 1, 6, 12, 16, 12, 11, 1, 6, 17, 25, 28, 19, 15, 1, 8, 22, 43, 49, 48, 30, 22, 1, 8, 30, 58, 87, 88, 77, 45, 30, 1, 10, 36, 87, 134, 167, 151, 122, 67, 42, 1, 10, 45, 113, 207, 270, 296, 247, 185, 97, 56, 1, 12, 54, 155, 295, 448, 510, 507, 394, 278, 139, 77
Offset: 1
Comments
Number of multiset partitions of length-k integer partitions of n. - Gus Wiseman, Nov 09 2018
Examples
From _Gus Wiseman_, Nov 09 2018: (Start) Triangle begins: 1 1 2 1 2 3 1 4 4 5 1 4 8 7 7 1 6 12 16 12 11 1 6 17 25 28 19 15 1 8 22 43 49 48 30 22 1 8 30 58 87 88 77 45 30 ... The fifth row {1, 4, 8, 7, 7} counts the following multiset partitions: {{5}} {{1,4}} {{1,1,3}} {{1,1,1,2}} {{1,1,1,1,1}} {{2,3}} {{1,2,2}} {{1},{1,1,2}} {{1},{1,1,1,1}} {{1},{4}} {{1},{1,3}} {{1,1},{1,2}} {{1,1},{1,1,1}} {{2},{3}} {{1},{2,2}} {{2},{1,1,1}} {{1},{1},{1,1,1}} {{2},{1,2}} {{1},{1},{1,2}} {{1},{1,1},{1,1}} {{3},{1,1}} {{1},{2},{1,1}} {{1},{1},{1},{1,1}} {{1},{1},{3}} {{1},{1},{1},{2}} {{1},{1},{1},{1},{1}} {{1},{2},{2}} (End)
Links
- Alois P. Heinz, Rows n = 1..200, flattened
- N. J. A. Sloane, Transforms
Crossrefs
Programs
-
Maple
h:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, h(n, i-1)+x*h(n-i, min(n-i, i))))) end: g:= proc(n, i, j) option remember; expand(`if`(j=0, 1, `if`(i<0, 0, add( g(n, i-1, j-k)*x^(i*k)*binomial(coeff(h(n$2), x, i)+k-1, k), k=0..j)))) end: b:= proc(n, i) option remember; expand(`if`(n=0, 1, `if`(i<1, 0, add(b(n-i*j, i-1)*g(i$2, j), j=0..n/i)))) end: T:= (n, k)-> coeff(b(n$2), x, k): seq(seq(T(n,k), k=1..n), n=1..12); # Alois P. Heinz, Feb 17 2023
-
Mathematica
sps[{}]:={{}};sps[set:{i_,_}]:=Join@@Function[s,Prepend[#,s]&/@sps[Complement[set,s]]]/@Cases[Subsets[set],{i,_}]; mps[set_]:=Union[Sort[Sort/@(#/.x_Integer:>set[[x]])]&/@sps[Range[Length[set]]]]; Table[Length[Join@@mps/@IntegerPartitions[n,{k}]],{n,5},{k,n}] (* Gus Wiseman, Nov 09 2018 *)
A058399 Triangle of partial row sums of partition triangle A008284.
1, 2, 1, 3, 2, 1, 5, 4, 2, 1, 7, 6, 4, 2, 1, 11, 10, 7, 4, 2, 1, 15, 14, 11, 7, 4, 2, 1, 22, 21, 17, 12, 7, 4, 2, 1, 30, 29, 25, 18, 12, 7, 4, 2, 1, 42, 41, 36, 28, 19, 12, 7, 4, 2, 1, 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1, 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1, 101, 100, 94, 80, 62
Offset: 1
Comments
T(n,m) is also the number of m-th largest elements in all partitions of n. - Omar E. Pol, Feb 14 2012
It appears that reversed rows converge to A000070. - Omar E. Pol, Mar 10 2012
The row sums give A006128. - Omar E. Pol, Mar 26 2012
T(n,m) is also the number of regions traversed by the m-th column of the section model of partitions with n sections (Cf. A135010, A206437). - Omar E. Pol, Apr 20 2012
Examples
From _Omar E. Pol_, Mar 10 2012: (Start) Triangle begins: 1; 2, 1; 3, 2, 1; 5, 4, 2, 1; 7, 6, 4, 2, 1; 11, 10, 7, 4, 2, 1; 15, 14, 11, 7, 4, 2, 1; 22, 21, 17, 12, 7, 4, 2, 1; 30, 29, 25, 18, 12, 7, 4, 2, 1; 42, 41, 36, 28, 19, 12, 7, 4, 2, 1; 56, 55, 50, 40, 29, 19, 12, 7, 4, 2, 1; 77, 76, 70, 58, 43, 30, 19, 12, 7, 4, 2, 1; (End)
Links
- Alois P. Heinz, Rows n = 1..141, flattened
Crossrefs
Programs
-
Maple
b:= proc(n, k) option remember; `if`(n=0, 1, `if`(k<1, 0, add(b(n-j*k, k-1), j=0..n/k))) end: T:= (n, m)-> b(n,n) -b(n,m-1): seq (seq (T(n, m), m=1..n), n=1..15); # Alois P. Heinz, Apr 20 2012
-
Mathematica
t[n_, m_] := Sum[ IntegerPartitions[n, {k}] // Length, {k, m, n}]; Table[t[n, m], {n, 1, 13}, {m, 1, n}] // Flatten (* Jean-François Alcover, Jun 21 2013 *)
Formula
T(n, m) = Sum_{k=m..n} A008284(n, k).
G.f. for m-th column: Sum_{n>=1} x^(n)/Product_{k=1..n+m-1} (1 - x^k).
T(n, m) = Sum_{k=1..n} A207379(k, m). - Omar E. Pol, Apr 22 2012
A038497 Matrix square of partition triangle A008284.
1, 2, 1, 3, 2, 1, 5, 5, 2, 1, 7, 8, 5, 2, 1, 11, 15, 10, 5, 2, 1, 15, 23, 18, 10, 5, 2, 1, 22, 38, 31, 20, 10, 5, 2, 1, 30, 56, 52, 34, 20, 10, 5, 2, 1, 42, 86, 83, 60, 36, 20, 10, 5, 2, 1, 56, 123, 129, 97, 63, 36, 20, 10, 5, 2, 1, 77, 181, 198, 158, 105, 65, 36, 20, 10, 5, 2, 1
Offset: 1
Comments
Row sums form A022811 (number of terms in n-th derivative of a function composed with itself 3 times). - Paul D. Hanna, Jul 13 2004
Examples
1; 2,1; 3,2,1; 5,5,2,1; ...
A039805 Matrix cube of partition triangle A008284.
1, 3, 1, 6, 3, 1, 13, 9, 3, 1, 23, 19, 9, 3, 1, 44, 42, 22, 9, 3, 1, 74, 80, 48, 22, 9, 3, 1, 129, 154, 99, 51, 22, 9, 3, 1, 210, 273, 193, 105, 51, 22, 9, 3, 1, 345, 484, 362, 212, 108, 51, 22, 9, 3, 1, 542, 815, 651, 401, 218, 108, 51, 22, 9, 3, 1, 858, 1369, 1147
Offset: 1
Comments
Row sums form A022812 (number of terms in n-th derivative of a function composed with itself 4 times). - Paul D. Hanna, Jul 13 2004
Examples
1; 3,1; 6,3,1; 13,9,3,1; ...
A327029 T(n, k) = Sum_{d|n} phi(d) * A008284(n/d, k) for n >= 1, T(0, 0) = 1. Triangle read by rows for 0 <= k <= n.
1, 0, 1, 0, 2, 1, 0, 3, 1, 1, 0, 4, 3, 1, 1, 0, 5, 2, 2, 1, 1, 0, 6, 6, 4, 2, 1, 1, 0, 7, 3, 4, 3, 2, 1, 1, 0, 8, 8, 6, 6, 3, 2, 1, 1, 0, 9, 6, 9, 6, 5, 3, 2, 1, 1, 0, 10, 11, 10, 10, 8, 5, 3, 2, 1, 1, 0, 11, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 0, 12, 17, 19, 19, 14, 12, 7, 5, 3, 2, 1, 1
Offset: 0
Comments
Dirichlet convolution of phi(n) and A008284(n,k) for n >= 1. - Richard L. Ollerton, May 07 2021
Examples
Triangle starts: [0] [1] [1] [0, 1] [2] [0, 2, 1] [3] [0, 3, 1, 1] [4] [0, 4, 3, 1, 1] [5] [0, 5, 2, 2, 1, 1] [6] [0, 6, 6, 4, 2, 1, 1] [7] [0, 7, 3, 4, 3, 2, 1, 1] [8] [0, 8, 8, 6, 6, 3, 2, 1, 1] [9] [0, 9, 6, 9, 6, 5, 3, 2, 1, 1]
Links
- Alois P. Heinz, Rows n = 0..200, flattened
Crossrefs
Programs
-
SageMath
def DivisorTriangle(f, T, Len, w = None): D = [[1]] for n in (1..Len-1): r = lambda k: [f(d)*T(n//d,k) for d in divisors(n)] L = [sum(r(k)) for k in (0..n)] if w != None: L = [*map(lambda v: v * w(n), L)] D.append(L) return D DivisorTriangle(euler_phi, A008284, 10)
Formula
From Richard L. Ollerton, May 07 2021: (Start)
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(gcd(n,i),k).
For n >= 1, T(n,k) = Sum_{i=1..n} A008284(n/gcd(n,i),k)*phi(gcd(n,i))/phi(n/gcd(n,i)). (End)
A039807 Matrix 5th power of partition triangle A008284.
1, 5, 1, 15, 5, 1, 45, 20, 5, 1, 110, 60, 20, 5, 1, 271, 170, 65, 20, 5, 1, 599, 426, 185, 65, 20, 5, 1, 1309, 1025, 486, 190, 65, 20, 5, 1, 2690, 2299, 1185, 501, 190, 65, 20, 5, 1, 5436, 4999, 2750, 1245, 506, 190, 65, 20, 5, 1, 10545, 10380, 6069, 2910, 1260
Offset: 0
Examples
1; 5,1; 15,5,1; 45,20,5,1; ...
A050304 Matrix 10th power of partition triangle A008284.
1, 10, 1, 55, 10, 1, 265, 65, 10, 1, 1045, 320, 65, 10, 1, 3817, 1365, 330, 65, 10, 1, 12583, 5127, 1420, 330, 65, 10, 1, 39148, 17710, 5447, 1430, 330, 65, 10, 1, 114235, 56638, 19030, 5502, 1430, 330, 65, 10, 1, 318857, 170993, 61865, 19350, 5512
Offset: 1
Examples
1; 10,1; 55,10,1; 265,65,10,1; ...
A039809 For n > 1, a(n) doubles under the transform T, where Ta is the matrix product of partition triangle A008284 with a, with a(1) = 1.
1, 1, 2, 5, 12, 32, 83, 223, 594, 1600, 4297, 11589, 31216, 84212, 227091, 612712, 1652913, 4459962, 12033405, 32469682, 87611105, 236402465, 637884103, 1721218224, 4644392797, 12532091909, 33815653370, 91245738923
Offset: 1
Examples
So a(7) = T(7,1)*a(1) + T(7,2)*a(2) + ... + T(7,6)*a(6) = 1*1 + 3*1 + 4*2 + 3*5 + 2*12 + 1*32 = 1 + 3 + 8 + 15 + 24 + 32 = 83, where T(n,k) = A008284(n,k).
Programs
-
PARI
P(n, k) = #partitions(n-k, k); /* A008284 */ lista(nn) = {my(a=vector(nn)); a[1]=1; for(n=2, nn, a[n] = sum(i=1, n-1, P(n,i)*a[i])); a;} \\ Petros Hadjicostas, May 30 2020
Formula
a(1) = 1 and a(n) = Sum_{i=1..n-1} A008284(n, i)*a(i) for n >= 2 (because 2*a(n) = Sum_{i=1..n} A008284(n,i)*a(i) for n >= 2).
a(n+1) = Sum_{k=0..n} A081719(n,k). - Philippe Deléham, Sep 30 2006
G.f.: (1/2) * ( x + Sum_{n>=1} a(n) * x^n / Product_{j=1..n} (1 - x^j) ). - Ilya Gutkovskiy, Jul 22 2021
Extensions
Various sections edited by Petros Hadjicostas, May 30 2020
Comments