A349221 Triangle read by rows: T(n, k) = 1 if k divides binomial(n-1, k-1), T(n, k) = 0 otherwise (n >= 1, 1 <= k <= n).
1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0
Offset: 1
Examples
The triangle T(n, k) begins: n\k 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 ... 1: 1 2: 1 0 3: 1 1 0 4: 1 0 1 0 5: 1 1 1 1 0 6: 1 0 0 0 1 0 7: 1 1 1 1 1 1 0 8: 1 0 1 0 1 0 1 0 9: 1 1 0 1 1 0 1 1 0 10: 1 0 1 1 0 1 1 0 1 0 11: 1 1 1 1 1 1 1 1 1 1 0 12: 1 0 0 0 1 1 1 0 0 0 1 0 13: 1 1 1 1 1 1 1 1 1 1 1 1 0 14: 1 0 1 0 1 0 0 0 1 0 1 0 1 0 15: 1 1 0 1 0 0 1 1 0 0 1 0 1 1 0 ... Differences between this example and that for A054521 occur at (n,k) = (10,4), (10,6), and (12,6).
References
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids (in Russian), FAN, Tashkent, 1990, ISBN 5-648-00738-8.
Links
- Michael De Vlieger, Table of n, a(n) for n = 1..11325 (rows 1 <= n <= 150, flattened)
- Boris A. Bondarenko, Generalized Pascal Triangles and Pyramids, English translation published by Fibonacci Association, Santa Clara Univ., Santa Clara, CA, 1993; see pp. 130-132.
- Michael De Vlieger, Bitmap of rows 1 <= n <= 2^10, showing 1 as black and 0 as white.
- Michael De Vlieger, Table of b(n) for n = 1..3322, where b(n) is the compactification of row n of a(n) as a binary number.
- Index entries for triangles and arrays related to Pascal's triangle
Programs
-
Mathematica
Table[Boole[Mod[Binomial[n - 1, k - 1], k] == 0], {n, 12}, {k, n}] // Flatten (* Michael De Vlieger, Nov 11 2021 *)
-
PARI
row(n) = vector(n, k, !(binomial(n-1,k-1) % k)); \\ Michel Marcus, Nov 11 2021
Formula
T(n, k) = [k|binomial(n-1, k-1)] = Sum_{j>=1} [k|binomial(n-1, k-1) AND gcd(n, k) = j], n >= 1, 1 <= k <= n, where [] is the Iverson bracket. (The j = 1 case is A054521.)
T(n, k) = T(n, n-k), n > 1, 1 <= k < n.
Comments