cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 88 results. Next

A058400 Triangle of partial row sums of partition triangle A058398.

Original entry on oeis.org

1, 2, 1, 3, 2, 1, 5, 4, 3, 1, 7, 6, 5, 3, 1, 11, 10, 9, 7, 4, 1, 15, 14, 13, 11, 8, 4, 1, 22, 21, 20, 18, 15, 10, 5, 1, 30, 29, 28, 26, 23, 18, 12, 5, 1, 42, 41, 40, 38, 35, 30, 23, 14, 6, 1, 56, 55, 54, 52, 49, 44, 37, 27, 16, 6, 1, 77, 76, 75, 73, 70, 65, 58, 47, 34, 19, 7, 1, 101
Offset: 1

Views

Author

Wolfdieter Lang, Dec 11 2000

Keywords

Comments

Mirror of A026820. - Omar E. Pol, Apr 21 2012

Examples

			Triangle begins:
1;
2,   1;
3,   2,  1;
5,   4,  3,  1;
7,   6,  5,  3, 1;
11, 10,  9,  7, 4, 1;
15, 14, 13, 11, 8, 4, 1;
		

Crossrefs

Columns 1-3: A000041(n), A000065(n), A007042(n+1).
Cf. A008284.

Formula

a(n, m) = sum(A058398(n, k), k=m..n).

A008284 Triangle of partition numbers: T(n,k) = number of partitions of n in which the greatest part is k, 1 <= k <= n. Also number of partitions of n into k positive parts, 1 <= k <= n.

Original entry on oeis.org

1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 3, 3, 2, 1, 1, 1, 3, 4, 3, 2, 1, 1, 1, 4, 5, 5, 3, 2, 1, 1, 1, 4, 7, 6, 5, 3, 2, 1, 1, 1, 5, 8, 9, 7, 5, 3, 2, 1, 1, 1, 5, 10, 11, 10, 7, 5, 3, 2, 1, 1, 1, 6, 12, 15, 13, 11, 7, 5, 3, 2, 1, 1, 1, 6, 14, 18, 18, 14, 11, 7, 5, 3, 2, 1, 1, 1, 7, 16, 23, 23, 20, 15, 11, 7, 5, 3, 2, 1, 1
Offset: 1

Views

Author

Keywords

Comments

From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010: (Start)
A000041(n+1) = 1 + Sum_{r=1..n} Sum_{k=1..min(r,n-r+1)} T(r,k).
T(n, n-k) is also the number of partitions of k in which the greatest part is at most n-k. (End)
From Richard R. Forberg, Dec 26 2014: (Start)
Elements of T(n, k) for n <= 2+3k, equal A000041(n-k) - A000070(n-2k-1), with the assumption A000070(n) = 0 for n < 0.
The diagonal T(2+2k, k), for k > 1 equals A007042, and the diagonal T(3+3k,k), for k >= 1, equals A104384. (End)
T(-n, k) is used as a definition for A380038, which can therefore be seen as an extension of this sequence for negative n. - Friedjof Tellkamp, Jan 18 2025

Examples

			The triangle T(n,k) begins:
   n\k 1  2  3  4  5  6  7  8  9 10 11 12 ...
   1:  1
   2:  1  1
   3:  1  1  1
   4:  1  2  1  1
   5:  1  2  2  1  1
   6:  1  3  3  2  1  1
   7:  1  3  4  3  2  1  1
   8:  1  4  5  5  3  2  1  1
   9:  1  4  7  6  5  3  2  1  1
  10:  1  5  8  9  7  5  3  2  1  1
  11:  1  5 10 11 10  7  5  3  2  1  1
  12:  1  6 12 15 13 11  7  5  3  2  1  1
... Reformatted and extended by _Wolfdieter Lang_, Dec 03 2012; additional extension by _Bob Selcoe_, Jun 09 2013
T(7,3) = 4 because we have [3,3,1], [3,2,2], [3,2,1,1] and [3,1,1,1,1], each having greatest part 3; or [5,1,1], [4,2,1], [3,3,1] and [3,2,2] each having 3 parts.
* Example from formula above: T(10,4) = 9 because T(6,4) + T(6,3) + T(6,2) + T(6,1) = 2 + 3 + 3 + 1 = 9.
* P(n) = P(n-1) + DT(n-1). P(n) = unordered partitions of n. (A000041) DT(n-1) = sum of diagonals beginning at T(n-1,1).
Example P(11) = 56, P(10) = 42, sum DT(10) = 1 + 4 + 5 + 3 + 1 = 14. - _Bob Selcoe_, Jun 09 2013
From _Omar E. Pol_, Nov 19 2019: (Start)
Illustration of initial terms: T(n,k) is also the number of vertical line segments in the k-th column of the n-th diagram, which represents the partitions of n:
.
    1    1 1    1 1 1    1 2 1 1    1 2 2 1 1    1 3 3 2 1 1    1 3 4 3 2 1 1
.
   _|   _| |   _| | |   _| | | |   _| | | | |   _| | | | | |   _| | | | | | |
        _ _|   _ _| |   _ _| | |   _ _| | | |   _ _| | | | |   _ _| | | | | |
               _ _ _|   _ _ _| |   _ _ _| | |   _ _ _| | | |   _ _ _| | | | |
                        _ _|   |   _ _|   | |   _ _|   | | |   _ _|   | | | |
                        _ _ _ _|   _ _ _ _| |   _ _ _ _| | |   _ _ _ _| | | |
                                   _ _ _|   |   _ _ _|   | |   _ _ _|   | | |
                                   _ _ _ _ _|   _ _ _ _ _| |   _ _ _ _ _| | |
                                                _ _|   |   |   _ _|   |   | |
                                                _ _ _ _|   |   _ _ _ _|   | |
                                                _ _ _|     |   _ _ _|     | |
                                                _ _ _ _ _ _|   _ _ _ _ _ _| |
                                                               _ _ _|   |   |
                                                               _ _ _ _ _|   |
                                                               _ _ _ _|     |
                                                               _ _ _ _ _ _ _|
(End)
		

References

  • L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 94, 96 and 307.
  • F. N. David, M. G. Kendall and D. E. Barton, Symmetric Function and Allied Tables, Cambridge, 1966, p. 219.
  • D. E. Knuth, The Art of Computer Programming, Volume 4, Fascicle 3: Generating All Combinations and Partitions, Addison-Wesley Professional, 2005, pp. 38, 45, 50 [From Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010]
  • D. E. Knuth, The Art of Computer Programming, vol. 4A, Combinatorial Algorithms, Section 7.2.1.4, p. 400.
  • D. S. Mitrinovic et al., Handbook of Number Theory, Kluwer, Section XIV.2, p. 493.
  • James J. Tattersall, Elementary Number Theory in Nine Chapters, Cambridge University Press, 1999, page 294.

Crossrefs

A000041 is row sums and diagonal.
Partial sums of rows gives A026820.
Read from right to left gives A058398.
Subtriangle of A072233 without row n=0 and column m=0.
Cf. A007042, A104384 which are diagonals with slope -2, -3.

Programs

  • Haskell
    a008284 n k = a008284_tabl !! (n-1) !! (k-1)
    a008284_row n = a008284_tabl !! (n-1)
    a008284_tabl = [1] : f [[1]] where
       f xss = ys : f (ys : xss) where
         ys = (map sum $ zipWith take [1..] xss) ++ [1]
    -- Reinhard Zumkeller, Sep 05 2014
    
  • Maple
    G:=-1+1/product(1-t*x^j,j=1..15): Gser:=simplify(series(G,x=0,17)): for n from 1 to 14 do P[n]:=coeff(Gser,x^n) od: for n from 1 to 14 do seq(coeff(P[n],t^j),j=1..n) od; # yields sequence in triangular form; Emeric Deutsch, Feb 12 2006
    with(combstruct):for n from 0 to 18 do seq(count(Partition(n), size=m), m = 1 .. n) od; # Zerinvary Lajos, Mar 30 2009
    T := proc(n,k) option remember; if k < 0 or n < 0 then 0 elif k = 0 then if n = 0 then 1 else 0 fi else T(n - 1, k - 1) + T(n - k, k) fi end: seq(print(seq(T(n, k), k=1..n)),n=1..14); # Peter Luschny, Jul 24 2011
  • Mathematica
    Column[Table[ IntegerPartitions[n, {k}] // Length, {n, 1, 20}, {k, 1, n}], Center] (* Frederik Beaujean (beaujean(AT)mpp.mpg.de), Apr 09 2010 *)
    (*Recurrence closely related to natural numbers and number of divisors of n*)
    Clear[t]; nn = 14; t[n_, 1] = 1; t[n_, k_] := t[n, k] = If[n >= k, Sum[t[n - i, k - 1], {i, 1, n - 1}] - Sum[t[n - i, k], {i, 1, k - 1}], 0];Flatten[Table[Table[t[n, k], {k, 1, n}], {n, 1, nn}]][[1 ;; 96]] (* Mats Granvik, Jan 01 2015 *)
    Table[SeriesCoefficient[1/QPochhammer[a q, q], {q, 0, n}, {a, 0, k}], {n, 1, 15}, {k, 1, n}] // Column (* Vladimir Reshetnikov, Nov 18 2016 *)
    T[n_, k_] := T[n, k] = If[n>0 && k>0, T[n-1, k-1] + T[n-k, k], Boole[n==0 && k==0]]
    Table[T[n, k], {n, 1, 20}, {k, 1, n}] // Flatten (* Robert A. Russell, May 12 2018 after Knuth 7.2.1.4 (39) *)
  • PARI
    T(n,k)=#partitions(n-k,k)
    for(n=1,9,for(k=1,n,print1(T(n,k)", "))) \\ Charles R Greathouse IV, Jan 04 2016
    
  • PARI
    A8284=[]; A008284(n,k)={for(n=#A8284+1,n,A8284=concat(A8284,[vector(n,k,if(2*k1,A8284[n-k][k]+A8284[n-1][k-1],1),numbpart(n-k)))]));if(k,A8284[n][k],A8284[n])} \\ Without 2nd argument, return row n. - M. F. Hasler, Sep 26 2017
    
  • Python
    from functools import lru_cache
    @lru_cache(maxsize=None)
    def A008284_T(n,k):
        if k==n or k==1: return 1
        if k>n: return 0
        return A008284_T(n-1,k-1)+A008284_T(n-k,k) # Chai Wah Wu, Sep 21 2023
  • Sage
    from sage.combinat.partition import number_of_partitions_length
    [[number_of_partitions_length(n, k) for k in (1..n)] for n in (1..12)] # Peter Luschny, Aug 01 2015
    

Formula

T(n, k) = Sum_{i=1..k} T(n-k, i), for 1 <= k <= n-1; T(n, n) = 1 for n >= 1.
Or, T(n, 1) = T(n, n) = 1, T(n, k) = 0 (k > n), T(n, k) = T(n-1, k-1) + T(n-k, k).
G.f. for k-th column: x^k/(Product_{j=1..k} (1-x^j)). - Wolfdieter Lang, Nov 29 2000
G.f.: A(x, y) = Product_{n>=1} 1/(1-x^n)^(P_n(y)/n), where P_n(y) = Sum_{d|n} eulerphi(n/d)*y^d. - Paul D. Hanna, Jul 13 2004
If k >= n/2, T(n,k) = T(2(n-k),n-k) = A000041(n-k). - Franklin T. Adams-Watters, Jan 12 2006 [Relation included by Hans Loeblich, Apr 16 2019, relation extended by Evan Robinson, Jun 30 2021]
G.f.: G(t,x) = -1 + 1/Product_{j>=1} (1-t*x^j). - Emeric Deutsch, Feb 12 2006
A002865(n) = Sum_{k=2..floor((n+2)/2)} T(n-k+1,k-1). - Reinhard Zumkeller, Nov 04 2007
A000700(n) = Sum_{k=1..n} (-1)^(n-k) T(n,k). - Jeremy L. Martin, Jul 06 2013
G.f.: -1 + e^(F(x,z)), where F(x,z) = Sum_{n >= 1} (x*z)^n/(n*(1 - z^n)) is a g.f. for A126988. - Peter Bala, Jan 13 2015
Also, T(n, n-k) = k for k = 1, 2, 3; n >= 2k. T(n, 2) = floor(n/2). T(n, 3) = round(n^2/12). - M. F. Hasler, Sep 26 2017
T(n,k) = [n>0 & k>0] * (T(n-1,k-1) + T(n-k,k)) + [n==0 & k==0]. - Robert A. Russell, May 12 2018 from Knuth 7.2.1.4 (39)
T(n, k) = Sum_{i=0..n-1} T(n-ik-1, k-1) for k >= 1; T(-n, k) = 0 for n > 0; T(n, 0) = [n==0]. - Joshua Swanson (writing for Juexian Li), May 24 2020

A359893 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  1  0  1
  1  1  0  0  1
  2  0  2  0  0  0  1
  3  0  1  2  0  0  0  0  1
  4  1  2  0  3  0  0  0  0  0  1
  6  1  3  0  1  3  0  0  0  0  0  0  1
  8  1  6  0  2  0  4  0  0  0  0  0  0  0  1
 11  2  7  1  3  0  1  4  0  0  0  0  0  0  0  0  1
 15  2 10  3  4  0  2  0  5  0  0  0  0  0  0  0  0  0  1
 20  3 13  3  7  0  3  0  1  5  0  0  0  0  0  0  0  0  0  0  1
 26  4 19  3 11  1  4  0  2  0  6  0  0  0  0  0  0  0  0  0  0  0  1
For example, row n = 8 counts the following partitions:
  611       4211  422    .  332  .  44  .  .  .  .  .  .  .  8
  5111            521       431     53
  32111           2222              62
  41111           3221              71
  221111          3311
  311111          22211
  2111111
  11111111
		

Crossrefs

Row sums are A000041.
Row lengths are 2n-1 = A005408(n-1).
Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
The mean statistic is ranked by A326567/A326568.
Omitting half-steps gives A359901.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]

A359901 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k = 1..n.

Original entry on oeis.org

1, 1, 1, 1, 0, 1, 2, 2, 0, 1, 3, 1, 0, 0, 1, 4, 2, 3, 0, 0, 1, 6, 3, 1, 0, 0, 0, 1, 8, 6, 2, 4, 0, 0, 0, 1, 11, 7, 3, 1, 0, 0, 0, 0, 1, 15, 10, 4, 2, 5, 0, 0, 0, 0, 1, 20, 13, 7, 3, 1, 0, 0, 0, 0, 0, 1, 26, 19, 11, 4, 2, 6, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
   1
   1  1
   1  0  1
   2  2  0  1
   3  1  0  0  1
   4  2  3  0  0  1
   6  3  1  0  0  0  1
   8  6  2  4  0  0  0  1
  11  7  3  1  0  0  0  0  1
  15 10  4  2  5  0  0  0  0  1
  20 13  7  3  1  0  0  0  0  0  1
  26 19 11  4  2  6  0  0  0  0  0  1
  35 24 14  5  3  1  0  0  0  0  0  0  1
  45 34 17  8  4  2  7  0  0  0  0  0  0  1
  58 42 23 12  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (6,1,1,1)            (6,2,1)      (4,3,2)
  (3,3,1,1,1)          (3,2,2,2)    (5,3,1)
  (4,2,1,1,1)          (4,2,2,1)
  (5,1,1,1,1)          (4,3,1,1)
  (3,2,1,1,1,1)        (2,2,2,2,1)
  (4,1,1,1,1,1)        (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (2,1,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
Row sums are A325347.
The mean statistic is ranked by A326567/A326568.
Including half-steps gives A359893.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranks A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Median[#]==k&]],{n,15},{k,n}]

A359902 Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  1  0  0  1
  2  1  0  0  1
  2  2  0  0  0  1
  4  2  1  0  0  0  1
  4  3  2  0  0  0  0  1
  7  4  3  1  0  0  0  0  1
  8  6  3  2  0  0  0  0  0  1
 12  8  4  3  1  0  0  0  0  0  1
 14 11  5  4  2  0  0  0  0  0  0  1
 21 14  8  4  3  1  0  0  0  0  0  0  1
 24 20 10  5  4  2  0  0  0  0  0  0  0  1
 34 25 15  6  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (3,3,1,1,1)          (6,2,1)      (4,3,2)
  (4,2,1,1,1)          (2,2,2,2,1)  (5,3,1)
  (5,1,1,1,1)          (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A002865(n-1).
Row sums are A027193 (odd-length ptns), strict A067659.
This is the odd-length case of A359901, with half-steps A359893.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.
A325347 counts partitions w/ integer median, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]

A307683 Number of partitions of n having a non-integer median.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2019

Keywords

Comments

This sequence and A325347 partition the partition numbers, A000041.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). - Gus Wiseman, Mar 16 2023

Examples

			a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
		

Crossrefs

The complement is counted by A325347, strict A359907.
For mean instead of median we have A349156, strict A361391.
These partitions have ranks A359912, complement A359908.
The strict case is A360952.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; !IntegerQ[Median[q]]], {n, 10}]

A359907 Number of strict integer partitions of n with integer median.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
  1  2  3  4   5  6    7    8    9    A    B    C     D     E
           31     42   421  53   432  64   542  75    643   86
                  51        62   531  73   632  84    652   95
                  321       71   621  82   641  93    742   A4
                            431       91   731  A2    751   B3
                            521       532  821  B1    832   C2
                                      541       543   841   D1
                                      631       642   931   653
                                      721       651   A21   743
                                                732   6421  752
                                                741         761
                                                831         842
                                                921         851
                                                5421        932
                                                            941
                                                            A31
                                                            B21
                                                            7421
		

Crossrefs

For mean instead of median: A102627, non-strict A067538 (ranked by A316413).
This is the strict case of A325347, ranked by A359908.
The median statistic is ranked by A360005(n)/2.
A000041 counts partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975, cf. A005578.
A058398 counts partitions by mean, see also A008284, A327482.
A326567/A326568 gives the mean of prime indices.
A359893, A359901, A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Median[#]]&]],{n,0,30}]

A359889 Numbers that are 1 or whose prime indices have the same mean as median.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

First differs from A236510 in having 252 (prime indices {1,1,2,2,4}).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
		

Crossrefs

These partitions are counted by A240219, strict A359897.
The LHS (mean of prime indices) is A326567/A326568.
The complement is A359890, counted by A359894.
The odd-length case is A359891, complement A359892, counted by A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]

Formula

Numbers n such that A326567(n)/A326568(n) = A360005(n)/2.

A359894 Number of integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(8) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)
         (311)   (3111)   (331)     (422)
         (2111)  (21111)  (421)     (431)
                          (511)     (521)
                          (2221)    (611)
                          (3211)    (4211)
                          (4111)    (5111)
                          (22111)   (22211)
                          (31111)   (32111)
                          (211111)  (41111)
                                    (221111)
                                    (311111)
                                    (2111111)
		

Crossrefs

The complement is counted by A240219.
These partitions are ranked by A359890, complement A359889.
The odd-length case is ranked by A359892, complement A359891.
The odd-length case is A359896, complement A359895.
The strict case is A359898, complement A359897.
The odd-length strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284 and A058398 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.
A359909 counts factorizations with the same mean as median, odd-len A359910.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]

A360068 Number of integer partitions of n such that the parts have the same mean as the multiplicities.

Original entry on oeis.org

1, 1, 0, 0, 1, 0, 0, 0, 2, 1, 0, 0, 6, 0, 0, 0, 6, 0, 7, 0, 1, 0, 0, 0, 0, 90, 0, 63, 0, 0, 0, 0, 11, 0, 0, 0, 436, 0, 0, 0, 0, 0, 0, 0, 0, 2157, 0, 0, 240, 1595, 22, 0, 0, 0, 6464, 0, 0, 0, 0, 0, 0, 0, 0, 11628, 4361, 0, 0, 0, 0, 0, 0, 0, 12927, 0, 0, 621, 0
Offset: 0

Views

Author

Gus Wiseman, Jan 27 2023

Keywords

Comments

Note that such a partition cannot be strict for n > 1.
Conjecture: If n is squarefree, then a(n) = 0.

Examples

			The n = 1, 4, 8, 9, 12, 16, 18 partitions (D=13):
  (1)  (22)  (3311)  (333)  (322221)  (4444)      (444222)
             (5111)         (332211)  (43222111)  (444411)
                            (422211)  (43321111)  (552222)
                            (522111)  (53221111)  (555111)
                            (531111)  (54211111)  (771111)
                            (621111)  (63211111)  (822222)
                                                  (D11111)
For example, the partition (4,3,3,3,3,3,2,2,1,1) has mean 5/2, and its multiplicities (1,5,2,2) also have mean 5/2, so it is counted under a(20).
		

Crossrefs

These partitions are ranked by A359903, for prime factors A359904.
Positions of positive terms are A360070.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature (A124010).
A326567/A326568 gives mean of prime indices (A112798).
A360069 counts partitions whose multiplicities have integer mean.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]==Mean[Length/@Split[#]]&]],{n,0,30}]
Showing 1-10 of 88 results. Next