cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 97 results. Next

A359893 Triangle read by rows where T(n,k) is the number of integer partitions of n with median k, where k ranges from 1 to n in steps of 1/2.

Original entry on oeis.org

1, 1, 0, 1, 1, 1, 0, 0, 1, 2, 0, 2, 0, 0, 0, 1, 3, 0, 1, 2, 0, 0, 0, 0, 1, 4, 1, 2, 0, 3, 0, 0, 0, 0, 0, 1, 6, 1, 3, 0, 1, 3, 0, 0, 0, 0, 0, 0, 1, 8, 1, 6, 0, 2, 0, 4, 0, 0, 0, 0, 0, 0, 0, 1, 11, 2, 7, 1, 3, 0, 1, 4, 0, 0, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  1  0  1
  1  1  0  0  1
  2  0  2  0  0  0  1
  3  0  1  2  0  0  0  0  1
  4  1  2  0  3  0  0  0  0  0  1
  6  1  3  0  1  3  0  0  0  0  0  0  1
  8  1  6  0  2  0  4  0  0  0  0  0  0  0  1
 11  2  7  1  3  0  1  4  0  0  0  0  0  0  0  0  1
 15  2 10  3  4  0  2  0  5  0  0  0  0  0  0  0  0  0  1
 20  3 13  3  7  0  3  0  1  5  0  0  0  0  0  0  0  0  0  0  1
 26  4 19  3 11  1  4  0  2  0  6  0  0  0  0  0  0  0  0  0  0  0  1
For example, row n = 8 counts the following partitions:
  611       4211  422    .  332  .  44  .  .  .  .  .  .  .  8
  5111            521       431     53
  32111           2222              62
  41111           3221              71
  221111          3311
  311111          22211
  2111111
  11111111
		

Crossrefs

Row sums are A000041.
Row lengths are 2n-1 = A005408(n-1).
Column k=1 is A027336(n+1).
For mean instead of median we have A058398, see also A008284, A327482.
The mean statistic is ranked by A326567/A326568.
Omitting half-steps gives A359901.
The odd-length case is A359902.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n], Median[#]==k&]],{n,1,10},{k,1,n,1/2}]

A360005 Two times the median of the multiset of prime indices of n.

Original entry on oeis.org

2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
		

Crossrefs

The triangle for this statistic is A359893, cf. A359901, A359902.
Positions of even terms are A359908, odd A359912.
Positions of first appearances are A360006, sorted A360007.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[prix[n]],{n,2,100}]

A006134 a(n) = Sum_{k=0..n} binomial(2*k,k).

Original entry on oeis.org

1, 3, 9, 29, 99, 351, 1275, 4707, 17577, 66197, 250953, 956385, 3660541, 14061141, 54177741, 209295261, 810375651, 3143981871, 12219117171, 47564380971, 185410909791, 723668784231, 2827767747951, 11061198475551, 43308802158651, 169719408596403, 665637941544507
Offset: 0

Views

Author

Keywords

Comments

The expression a(n) = B^n*Sum_{ k=0..n } binomial(2*k,k)/B^k gives A006134 for B=1, A082590 (B=2), A132310 (B=3), A002457 (B=4), A144635 (B=5). - N. J. A. Sloane, Jan 21 2009
T(n+1,1) from table A045912 of characteristic polynomial of negative Pascal matrix. - Michael Somos, Jul 24 2002
p divides a((p-3)/2) for p=11, 13, 23, 37, 47, 59, 61, 71, 73, 83, 97, 107, 109, 131, 157, 167, ...: A097933. Also primes congruent to {1, 2, 3, 11} mod 12 or primes p such that 3 is a square mod p (excluding 2 and 3) A038874. - Alexander Adamchuk, Jul 05 2006
Partial sums of the even central binomial coefficients. For p prime >=5, a(p-1) = 1 or -1 (mod p) according as p = 1 or -1 (mod 3) (see Pan and Sun link). - David Callan, Nov 29 2007
First column of triangle A187887. - Michel Marcus, Jun 23 2013
From Gus Wiseman, Apr 20 2023: (Start)
Also the number of nonempty subsets of {1,...,2n+1} with median n+1, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). The odd/even-length cases are A000984 and A006134(n-1). For example, the a(0) = 1 through a(2) = 9 subsets are:
{1} {2} {3}
{1,3} {1,5}
{1,2,3} {2,4}
{1,3,4}
{1,3,5}
{2,3,4}
{2,3,5}
{1,2,4,5}
{1,2,3,4,5}
Alternatively, a(n-1) is the number of nonempty subsets of {1,...,2n-1} with median n.
(End)

Examples

			1 + 3*x + 9*x^2 + 29*x^3 + 99*x^4 + 351*x^5 + 1275*x^6 + 4707*x^7 + 17577*x^8 + ...
		

References

  • Marko Petkovsek, Herbert Wilf and Doron Zeilberger, A=B, A K Peters, 1996, p. 22.
  • N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

Crossrefs

Cf. A000984 (first differences), A097933, A038874, A132310.
Equals A066796 + 1.
Odd bisection of A100066.
Row sums of A361654 (also column k = 2).
A007318 counts subsets by length, A231147 by median, A013580 by integer median.
A359893 and A359901 count partitions by median.

Programs

  • MATLAB
    n=10; x=pascal(n); trace(x)
    
  • Magma
    &cat[ [&+[ Binomial(2*k, k): k in [0..n]]]: n in [0..30]]; // Vincenzo Librandi, Aug 13 2015
  • Maple
    A006134 := proc(n) sum(binomial(2*k,k),k=0..n); end;
    a := n -> -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - I/sqrt(3):
    seq(simplify(a(n)), n=0..24); # Peter Luschny, Oct 29 2015
    # third program:
    A006134 := series(exp(2*x)*BesselI(0, 2*x) + exp(x)*int(BesselI(0, 2*x)*exp(x), x), x = 0, 25):
    seq(n!*coeff(A006134, x, n), n=0..24); # Mélika Tebni, Feb 27 2024
  • Mathematica
    Table[Sum[((2k)!/(k!)^2),{k,0,n}], {n,0,50}] (* Alexander Adamchuk, Jul 05 2006 *)
    a[ n_] := (4/3) Binomial[ 2 n, n] Hypergeometric2F1[ 1/2, 1, -n + 1/2, -1/3] (* Michael Somos, Jun 20 2012 *)
    Accumulate[Table[Binomial[2n,n],{n,0,30}]] (* Harvey P. Dale, Jan 11 2015 *)
    CoefficientList[Series[1/((1 - x) Sqrt[1 - 4 x]), {x, 0, 33}], x] (* Vincenzo Librandi, Aug 13 2015 *)
  • Maxima
    makelist(sum(binomial(2*k,k),k,0,n),n,0,12); /* Emanuele Munarini, Mar 15 2011 */
    
  • PARI
    {a(n) = if( n<0, 0, polcoeff( charpoly( matrix( n+1, n+1, i, j, -binomial( i+j-2, i-1))), 1))} \\ Michael Somos, Jul 10 2002
    
  • PARI
    {a(n)=binomial(2*n,n)*sum(k=0,2*n,(-1)^k*polcoeff((1+x+x^2)^n,k)/binomial(2*n,k))} \\ Paul D. Hanna, Aug 21 2007
    
  • PARI
    my(x='x+O('x^100)); Vec(1/((1-x)*sqrt(1-4*x))) \\ Altug Alkan, Oct 29 2015
    

Formula

From Alexander Adamchuk, Jul 05 2006: (Start)
a(n) = Sum_{k=0..n} (2k)!/(k!)^2.
a(n) = A066796(n) + 1, n>0. (End)
G.f.: 1/((1-x)*sqrt(1-4*x)).
D-finite with recurrence: (n+2)*a(n+2) - (5*n+8)*a(n+1) + 2*(2*n+3)*a(n) = 0. - Emanuele Munarini, Mar 15 2011
a(n) = C(2n,n) * Sum_{k=0..2n} (-1)^k*trinomial(n,k)/C(2n,k) where trinomial(n,k) = [x^k] (1 + x + x^2)^n. E.g. a(2) = C(4,2)*(1/1 - 2/4 + 3/6 - 2/4 + 1/1) = 6*(3/2) = 9 ; a(3) = C(6,3)*(1/1 - 3/6 + 6/15 - 7/20 + 6/15 - 3/6 + 1/1) = 20*(29/20) = 29. - Paul D. Hanna, Aug 21 2007
From Alzhekeyev Ascar M, Jan 19 2012: (Start)
a(n) = Sum_{ k=0..n } b(k)*binomial(n+k,k), where b(k)=0 for n-k == 2 (mod 3), b(k)=1 for n-k == 0 or 1 (mod 6), and b(k)=-1 for n-k== 3 or 4 (mod 6).
a(n) = Sum_{ k=0..n-1 } c(k)*binomial(2n,k) + binomial(2n,n), where c(k)=0 for n-k == 0 (mod 3), c(k)=1 for n-k== 1 (mod 3), and c(k)=-1 for n-k==2 (mod 3). (End)
a(n) ~ 2^(2*n+2)/(3*sqrt(Pi*n)). - Vaclav Kotesovec, Nov 06 2012
G.f.: G(0)/2/(1-x), where G(k)= 1 + 1/(1 - 2*x*(2*k+1)/(2*x*(2*k+1) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 24 2013
G.f.: G(0)/(1-x), where G(k)= 1 + 4*x*(4*k+1)/( (4*k+2) - x*(4*k+2)*(4*k+3)/(x*(4*k+3) + (k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 26 2013
a(n) = Sum_{k = 0..n} binomial(n+1,k+1)*A002426(k). - Peter Bala, Oct 29 2015
a(n) = -binomial(2*(n+1),n+1)*hypergeom([1,n+3/2],[n+2], 4) - i/sqrt(3). - Peter Luschny, Oct 29 2015
a(n) = binomial(2*n, n)*hypergeom([1,-n], [1/2-n], 1/4). - Peter Luschny, Mar 16 2016
From Gus Wiseman, Apr 20 2023: (Start)
a(n+1) - a(n) = A000984(n).
a(n) = A013580(2n+1,n+1) (conjectured).
a(n) = 2*A024718(n) - 1.
a(n) = A100066(2n+1).
a(n) = A231147(2n+1,n+1) (conjectured). (End)
a(n) = Sum_{k=0..floor(n/3)} 3^(n-3*k) * binomial(n-k,2*k) * binomial(2*k,k) (Sawhney, 2017). - Amiram Eldar, Feb 24 2024
From Mélika Tebni, Feb 27 2024: (Start)
Limit_{n -> oo} a(n) / A281593(n) = 2.
E.g.f.: exp(2*x)*BesselI(0,2*x) + exp(x)*integral( BesselI(0,2*x)*exp(x) ) dx. (End)
a(n) = [(x*y)^n] 1/((1 - (x + y))*(1 - x*y)). - Stefano Spezia, Feb 16 2025
a(n) = Sum_{k=0..floor(n/2)} (-1)^k*binomial(2*n+1-k, n-2*k). - Michael Weselcouch, Jun 17 2025
a(n) = binomial(1+2*n, n)*hypergeom([1, (1-n)/2, -n/2], [-1-2*n, 2+n], 4). - Stefano Spezia, Jun 18 2025

Extensions

Simpler definition from Alexander Adamchuk, Jul 05 2006

A359908 Numbers whose prime indices have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with median 2, so 180 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so 360 is not in the sequence.
		

Crossrefs

The odd-length case is A027193.
For mean instead of median we have A316413.
These partitions are counted by A325347, strict A359907.
The complement is A359912, counted by A307683.
The median of prime indices is given by A360005/2.
The case of integer mean also is A360009.
A112798 lists prime indices, length A001222, sum A056239.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Median[prix[#]]]&]

A359902 Triangle read by rows where T(n,k) is the number of odd-length integer partitions of n with median k.

Original entry on oeis.org

1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 2, 1, 0, 0, 1, 2, 2, 0, 0, 0, 1, 4, 2, 1, 0, 0, 0, 1, 4, 3, 2, 0, 0, 0, 0, 1, 7, 4, 3, 1, 0, 0, 0, 0, 1, 8, 6, 3, 2, 0, 0, 0, 0, 0, 1, 12, 8, 4, 3, 1, 0, 0, 0, 0, 0, 1, 14, 11, 5, 4, 2, 0, 0, 0, 0, 0, 0, 1
Offset: 1

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			Triangle begins:
  1
  0  1
  1  0  1
  1  0  0  1
  2  1  0  0  1
  2  2  0  0  0  1
  4  2  1  0  0  0  1
  4  3  2  0  0  0  0  1
  7  4  3  1  0  0  0  0  1
  8  6  3  2  0  0  0  0  0  1
 12  8  4  3  1  0  0  0  0  0  1
 14 11  5  4  2  0  0  0  0  0  0  1
 21 14  8  4  3  1  0  0  0  0  0  0  1
 24 20 10  5  4  2  0  0  0  0  0  0  0  1
 34 25 15  6  5  3  1  0  0  0  0  0  0  0  1
For example, row n = 9 counts the following partitions:
  (7,1,1)              (5,2,2)      (3,3,3)  (4,4,1)  .  .  .  .  (9)
  (3,3,1,1,1)          (6,2,1)      (4,3,2)
  (4,2,1,1,1)          (2,2,2,2,1)  (5,3,1)
  (5,1,1,1,1)          (3,2,2,1,1)
  (2,2,1,1,1,1,1)
  (3,1,1,1,1,1,1)
  (1,1,1,1,1,1,1,1,1)
		

Crossrefs

Column k=1 is A002865(n-1).
Row sums are A027193 (odd-length ptns), strict A067659.
This is the odd-length case of A359901, with half-steps A359893.
The median statistic is ranked by A360005(n)/2.
First appearances of medians are ranked by A360006, A360007.
A000041 counts partitions, strict A000009.
A058398 counts partitions by mean, see also A008284, A327482.
A067538 counts partitions w/ integer mean, strict A102627, ranked by A316413.
A240219 counts partitions w/ the same mean as median, complement A359894.
A325347 counts partitions w/ integer median, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],OddQ[Length[#]]&&Median[#]==k&]],{n,15},{k,n}]

A307683 Number of partitions of n having a non-integer median.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2019

Keywords

Comments

This sequence and A325347 partition the partition numbers, A000041.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). - Gus Wiseman, Mar 16 2023

Examples

			a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
		

Crossrefs

The complement is counted by A325347, strict A359907.
For mean instead of median we have A349156, strict A361391.
These partitions have ranks A359912, complement A359908.
The strict case is A360952.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; !IntegerQ[Median[q]]], {n, 10}]

A359907 Number of strict integer partitions of n with integer median.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
  1  2  3  4   5  6    7    8    9    A    B    C     D     E
           31     42   421  53   432  64   542  75    643   86
                  51        62   531  73   632  84    652   95
                  321       71   621  82   641  93    742   A4
                            431       91   731  A2    751   B3
                            521       532  821  B1    832   C2
                                      541       543   841   D1
                                      631       642   931   653
                                      721       651   A21   743
                                                732   6421  752
                                                741         761
                                                831         842
                                                921         851
                                                5421        932
                                                            941
                                                            A31
                                                            B21
                                                            7421
		

Crossrefs

For mean instead of median: A102627, non-strict A067538 (ranked by A316413).
This is the strict case of A325347, ranked by A359908.
The median statistic is ranked by A360005(n)/2.
A000041 counts partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975, cf. A005578.
A058398 counts partitions by mean, see also A008284, A327482.
A326567/A326568 gives the mean of prime indices.
A359893, A359901, A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Median[#]]&]],{n,0,30}]

A053263 Coefficients of the '5th-order' mock theta function chi_1(q).

Original entry on oeis.org

1, 2, 2, 3, 3, 4, 4, 6, 5, 7, 8, 9, 9, 12, 12, 15, 15, 18, 19, 23, 23, 27, 30, 33, 34, 41, 42, 49, 51, 57, 61, 69, 72, 81, 87, 96, 100, 113, 119, 132, 140, 153, 163, 180, 188, 208, 221, 240, 253, 278, 294, 319, 339, 366, 388, 422, 443, 481, 510, 549, 580, 626, 662
Offset: 0

Views

Author

Dean Hickerson, Dec 19 1999

Keywords

Comments

The rank of a partition is its largest part minus the number of parts.
Number of partitions of n such that 2*(least part) > greatest part. - Clark Kimberling, Feb 16 2014
Also the number of partitions of n with the same median as maximum. These are conjugate to the partitions described above. For minimum instead of maximum we have A361860. - Gus Wiseman, Apr 23 2023

Examples

			From _Gus Wiseman_, Apr 20 2023: (Start)
The a(1) = 1 through a(8) = 6 partitions such that 2*(minimum) > (maximum):
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (32)     (33)      (43)       (44)
                    (1111)  (11111)  (222)     (322)      (53)
                                     (111111)  (1111111)  (332)
                                                          (2222)
                                                          (11111111)
The a(1) = 1 through a(8) = 6 partitions such that (median) = (maximum):
  (1)  (2)   (3)    (4)     (5)      (6)       (7)        (8)
       (11)  (111)  (22)    (221)    (33)      (331)      (44)
                    (1111)  (11111)  (222)     (2221)     (332)
                                     (111111)  (1111111)  (2222)
                                                          (22211)
                                                          (11111111)
(End)
		

References

  • Srinivasa Ramanujan, Collected Papers, Chelsea, New York, 1962, pp. 354-355
  • Srinivasa Ramanujan, The Lost Notebook and Other Unpublished Papers, Narosa Publishing House, New Delhi, 1988, pp. 20, 25

Crossrefs

Other '5th-order' mock theta functions are at A053256, A053257, A053258, A053259, A053260, A053261, A053262, A053264, A053265, A053266, A053267.
A000041 counts integer partitions, strict A000009, odd-length A027193.
A359893 and A359901 count partitions by median.

Programs

  • Mathematica
    1+Series[Sum[q^(2n+1)(1+q^n)/Product[1-q^k, {k, n+1, 2n+1}], {n, 0, 49}], {q, 0, 100}]
    (* Also: *)
    Table[Count[ IntegerPartitions[n], p_ /; 2 Min[p] > Max[p]], {n, 40}]
    (* Clark Kimberling, Feb 16 2014 *)
    nmax = 100; CoefficientList[Series[1 + Sum[x^(2*k+1)*(1+x^k) / Product[1-x^j, {j, k+1, 2*k+1}], {k, 0, Floor[nmax/2]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 12 2019 *)

Formula

G.f.: chi_1(q) = Sum_{n>=0} q^n/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))).
G.f.: chi_1(q) = 1 + Sum_{n>=0} q^(2n+1) (1+q^n)/((1-q^(n+1))(1-q^(n+2))...(1-q^(2n+1))).
a(n) is twice the number of partitions of 5n+3 with rank == 2 (mod 5) minus number with rank == 0 or 1 (mod 5).
a(n) - 1 is the number of partitions of n with unique smallest part and all other parts <= one plus twice the smallest part.
a(n) ~ sqrt(phi/2) * exp(Pi*sqrt(2*n/15)) / (5^(1/4)*sqrt(n)), where phi = A001622 = (1+sqrt(5))/2 is the golden ratio. - Vaclav Kotesovec, Jun 16 2019

A359889 Numbers that are 1 or whose prime indices have the same mean as median.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

First differs from A236510 in having 252 (prime indices {1,1,2,2,4}).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
		

Crossrefs

These partitions are counted by A240219, strict A359897.
The LHS (mean of prime indices) is A326567/A326568.
The complement is A359890, counted by A359894.
The odd-length case is A359891, complement A359892, counted by A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]

Formula

Numbers n such that A326567(n)/A326568(n) = A360005(n)/2.

A063655 Smallest semiperimeter of integral rectangle with area n.

Original entry on oeis.org

2, 3, 4, 4, 6, 5, 8, 6, 6, 7, 12, 7, 14, 9, 8, 8, 18, 9, 20, 9, 10, 13, 24, 10, 10, 15, 12, 11, 30, 11, 32, 12, 14, 19, 12, 12, 38, 21, 16, 13, 42, 13, 44, 15, 14, 25, 48, 14, 14, 15, 20, 17, 54, 15, 16, 15, 22, 31, 60, 16, 62, 33, 16, 16, 18, 17, 68, 21, 26
Offset: 1

Views

Author

Floor van Lamoen, Jul 24 2001

Keywords

Comments

Similar to A027709, which is minimal perimeter of polyomino of n cells, or equivalently, minimal perimeter of rectangle of area at least n and with integer sides. Present sequence is minimal semiperimeter of rectangle with area exactly n and with integer sides. - Winston C. Yang (winston(AT)cs.wisc.edu), Feb 03 2002
Semiperimeter b+d, d >= b, of squarest (smallest d-b) integral rectangle with area bd = n. That is, b = largest divisor of n <= sqrt(n), d = smallest divisor of n >= sqrt(n). a(n) = n+1 iff n is noncomposite (1 or prime). - Daniel Forgues, Nov 22 2009
From Juhani Heino, Feb 05 2019: (Start)
Basis for any thickness "frames" around the minimal area. Perimeter can be thought as the 0-thick frame, it is obviously 2a(n). Thickness 1 is achieved by laying unit tiles around the area, there are 2(a(n)+2) of them. Thickness 2 comes from the second such layer, now there are 4(a(n)+4) and so on. They all depend only on a(n), so they share this structure:
Every n > 1 is included. (For different thicknesses, every integer that can be derived from these with the respective formula. So, the perimeter has every even n > 2.)
For each square n > 1, a(n) = a(n-1).
a(1), a(2) and a(6) are the only unique values - the others appear multiple times.
(End)
Gives a discrete Uncertainty Principle. A complex function on an abelian group of order n and its Discrete Fourier Transform must have at least a(n) nonzero entries between them. This bound is achieved by the indicator function on a subgroup of size closest to sqrt(n). - Oscar Cunningham, Oct 10 2021
Also two times the median divisor of n, where the median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). The version for mean instead of median is A057020/A057021. Other doubled medians of multisets are: A360005 (prime indices), A360457 (distinct prime indices), A360458 (distinct prime factors), A360459 (prime factors), A360460 (prime multiplicities), A360555 (0-prepended differences). - Gus Wiseman, Mar 18 2023

Examples

			Since 15 = 1*15 = 3*5 and the 3*5 rectangle gives smallest semiperimeter 8, we have a(15)=8.
		

Crossrefs

Positions of odd terms are A139710.
Positions of even terms are A139711.
A000005 counts divisors, listed by A027750.
A000975 counts subsets with integer median.

Programs

  • Maple
    A063655 := proc(n)
        local i,j;
        for i from floor(sqrt(n)) to 1 by -1 do
            j := floor(n/i) ;
            if i*j = n then
                return i+j;
            end if;
        end do:
    end proc:
    seq(A063655(n), n=1..80); # Winston C. Yang, Feb 03 2002
  • Mathematica
    Table[d = Divisors[n]; len = Length[d]; If[OddQ[len], 2*Sqrt[n], d[[len/2]] + d[[1 + len/2]]], {n, 100}] (* T. D. Noe, Mar 06 2012 *)
    Table[2*Median[Divisors[n]],{n,100}] (* Gus Wiseman, Mar 18 2023 *)
  • PARI
    A063655(n) = { my(c=1); fordiv(n,d,if((d*d)>=n,if((d*d)==n,return(2*d),return(c+d))); c=d); (0); }; \\ Antti Karttunen, Oct 20 2017
    
  • Python
    from sympy import divisors
    def A063655(n):
        d = divisors(n)
        l = len(d)
        return d[(l-1)//2] + d[l//2] # Chai Wah Wu, Jun 14 2019

Formula

a(n) = A033676(n) + A033677(n).
a(n) = A162348(2n-1) + A162348(2n). - Daniel Forgues, Sep 29 2014
a(n) = Min_{d|n} (n/d + d). - Ridouane Oudra, Mar 17 2024

Extensions

Corrected and extended by Larry Reeves (larryr(AT)acm.org) and Dean Hickerson, Jul 26 2001
Showing 1-10 of 97 results. Next