cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 80 results. Next

A360005 Two times the median of the multiset of prime indices of n.

Original entry on oeis.org

2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
		

Crossrefs

The triangle for this statistic is A359893, cf. A359901, A359902.
Positions of even terms are A359908, odd A359912.
Positions of first appearances are A360006, sorted A360007.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[prix[n]],{n,2,100}]

A307683 Number of partitions of n having a non-integer median.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2019

Keywords

Comments

This sequence and A325347 partition the partition numbers, A000041.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). - Gus Wiseman, Mar 16 2023

Examples

			a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
		

Crossrefs

The complement is counted by A325347, strict A359907.
For mean instead of median we have A349156, strict A361391.
These partitions have ranks A359912, complement A359908.
The strict case is A360952.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; !IntegerQ[Median[q]]], {n, 10}]

A359907 Number of strict integer partitions of n with integer median.

Original entry on oeis.org

0, 1, 1, 1, 2, 1, 4, 2, 6, 4, 9, 6, 14, 10, 18, 16, 27, 23, 36, 34, 51, 49, 67, 68, 94, 95, 122, 129, 166, 174, 217, 233, 287, 308, 371, 405, 487, 528, 622, 683, 805, 880, 1024, 1127, 1305, 1435, 1648, 1818, 2086, 2295, 2611, 2882, 3273, 3606, 4076, 4496, 5069
Offset: 0

Views

Author

Gus Wiseman, Jan 21 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The a(1) = 1 through a(14) = 18 partitions (A..E = 10..14):
  1  2  3  4   5  6    7    8    9    A    B    C     D     E
           31     42   421  53   432  64   542  75    643   86
                  51        62   531  73   632  84    652   95
                  321       71   621  82   641  93    742   A4
                            431       91   731  A2    751   B3
                            521       532  821  B1    832   C2
                                      541       543   841   D1
                                      631       642   931   653
                                      721       651   A21   743
                                                732   6421  752
                                                741         761
                                                831         842
                                                921         851
                                                5421        932
                                                            941
                                                            A31
                                                            B21
                                                            7421
		

Crossrefs

For mean instead of median: A102627, non-strict A067538 (ranked by A316413).
This is the strict case of A325347, ranked by A359908.
The median statistic is ranked by A360005(n)/2.
A000041 counts partitions, strict A000009.
A051293 counts subsets with integer mean, median A000975, cf. A005578.
A058398 counts partitions by mean, see also A008284, A327482.
A326567/A326568 gives the mean of prime indices.
A359893, A359901, A359902 count partitions by median.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],UnsameQ@@#&&IntegerQ[Median[#]]&]],{n,0,30}]

A362611 Number of modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

A mode in a multiset is an element that appears at least as many times as each of the others. For example, the modes of {a,a,b,b,b,c,d,d,d} are {b,d}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 450 is 2*3*3*5*5, modes {3,5}, so a(450) = 2.
The factorization of 900 is 2*2*3*3*5*5, modes {2,3,5}, so a(900) = 3.
The factorization of 1500 is 2*2*3*5*5*5, modes {5}, so a(1500) = 1.
The factorization of 8820 is 2*2*3*3*5*7*7, modes {2,3,7}, so a(8820) = 3.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A356862, counted by A362608.
Positions of terms > 1 are A362605, counted by A362607.
For co-mode we have A362613, counted by A362615.
This statistic (mode-count) has triangular form A362614.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.
A359178 ranks partitions with a unique co-mode, counted by A362610.
A362606 ranks partitions with more than one co-mode, counted by A362609.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Max@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmax(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362611(n): return list(v:=factorint(n).values()).count(max(v,default=0)) # Chai Wah Wu, May 08 2023
    

Formula

For n > 1, 1 <= a(n) << log n. - Charles R Greathouse IV, May 09 2023
a(n) <= A001221(n), with equality if and only if n is a power of a squarefree number (A072774). - Amiram Eldar, Mar 02 2025

A359889 Numbers that are 1 or whose prime indices have the same mean as median.

Original entry on oeis.org

1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 13, 14, 15, 16, 17, 19, 21, 22, 23, 25, 26, 27, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 41, 43, 46, 47, 49, 51, 53, 55, 57, 58, 59, 61, 62, 64, 65, 67, 69, 71, 73, 74, 77, 79, 81, 82, 83, 85, 86, 87, 89, 90, 91, 93, 94
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

First differs from A236510 in having 252 (prime indices {1,1,2,2,4}).
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 900 are {1,1,2,2,3,3}, with mean 2 and median 2, so 900 is in the sequence.
		

Crossrefs

These partitions are counted by A240219, strict A359897.
The LHS (mean of prime indices) is A326567/A326568.
The complement is A359890, counted by A359894.
The odd-length case is A359891, complement A359892, counted by A359895.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359893 and A359901 count partitions by median, odd-length A359902.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],#==1||Mean[prix[#]]==Median[prix[#]]&]

Formula

Numbers n such that A326567(n)/A326568(n) = A360005(n)/2.

A362613 Number of co-modes in the prime factorization of n.

Original entry on oeis.org

0, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 2, 2, 2, 2, 1, 2, 2, 1, 1, 3, 1, 1, 1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 2, 3, 1, 1, 1, 2, 1, 1, 2, 3, 1, 1, 1, 2, 1, 2, 2, 2, 2
Offset: 1

Views

Author

Gus Wiseman, May 05 2023

Keywords

Comments

First differs from A327500 at n = 180.
First differs from A351946 at n = 180.
First differs from A353507 at n = 180.
We define a co-mode in a multiset to be an element that appears at most as many times as each of the others. For example, the co-modes of {a,a,b,b,b,c,c} are {a,c}.
a(n) depends only on the prime signature of n. - Andrew Howroyd, May 08 2023

Examples

			The factorization of 180 is 2*2*3*3*5, co-modes {5}, so a(180) = 1.
The factorization of 900 is 2*2*3*3*5*5, co-modes {2,3,5}, so a(900) = 3.
The factorization of 8820 is 2*2*3*3*5*7*7, co-modes {5}, so a(8820) = 1.
		

Crossrefs

Positions of first appearances are A002110.
Positions of 1's are A359178, counted by A362610.
Positions of terms > 1 are A362606, counted by A362609.
For mode we have A362611, counted by A362614.
Counting partitions by this statistic (co-mode count) gives A362615.
A027746 lists prime factors (with multiplicity).
A112798 lists prime indices, length A001222, sum A056239.

Programs

  • Mathematica
    Table[x=Last/@If[n==1,0,FactorInteger[n]];Count[x,Min@@x],{n,100}]
  • PARI
    a(n) = if(n==1, 0, my(f=factor(n)[,2], m=vecmin(f)); #select(v->v==m, f)) \\ Andrew Howroyd, May 08 2023
  • Python
    from sympy import factorint
    def A362613(n):
        v = factorint(n).values()
        w = min(v,default=0)
        return sum(1 for e in v if e<=w) # Chai Wah Wu, May 08 2023
    

A360457 Two times the median of the set of distinct prime indices of n; a(1) = 1.

Original entry on oeis.org

1, 2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 3, 12, 5, 5, 2, 14, 3, 16, 4, 6, 6, 18, 3, 6, 7, 4, 5, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 4, 26, 4, 28, 6, 5, 10, 30, 3, 8, 4, 9, 7, 32, 3, 8, 5, 10, 11, 34, 4, 36, 12, 6, 2, 9, 4, 38, 8, 11, 6, 40, 3, 42, 13, 5, 9, 9, 4, 44, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Distinct prime indices are listed by A304038.

Examples

			The prime indices of 65 are {3,6}, with distinct parts {3,6}, with median 9/2, so a(65) = 9.
The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so a(900) = 4.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A326619/A326620.
The version for all prime indices is A360005.
Positions of first appearances are A360006, sorted A360007.
The version for distinct prime factors is A360458.
The version for all prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360550.
Positions of odd terms are A360551.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[PrimePi/@First/@FactorInteger[n]]],{n,100}]

A359894 Number of integer partitions of n whose parts do not have the same mean as median.

Original entry on oeis.org

0, 0, 0, 0, 1, 3, 3, 10, 13, 20, 28, 49, 53, 93, 113, 145, 203, 287, 329, 479, 556, 724, 955, 1242, 1432, 1889, 2370, 2863, 3502, 4549, 5237, 6825, 8108, 9839, 12188, 14374, 16958, 21617, 25852, 30582, 36100, 44561, 51462, 63238, 73386, 85990, 105272, 124729
Offset: 0

Views

Author

Gus Wiseman, Jan 20 2023

Keywords

Examples

			The a(4) = 1 through a(8) = 13 partitions:
  (211)  (221)   (411)    (322)     (332)
         (311)   (3111)   (331)     (422)
         (2111)  (21111)  (421)     (431)
                          (511)     (521)
                          (2221)    (611)
                          (3211)    (4211)
                          (4111)    (5111)
                          (22111)   (22211)
                          (31111)   (32111)
                          (211111)  (41111)
                                    (221111)
                                    (311111)
                                    (2111111)
		

Crossrefs

The complement is counted by A240219.
These partitions are ranked by A359890, complement A359889.
The odd-length case is ranked by A359892, complement A359891.
The odd-length case is A359896, complement A359895.
The strict case is A359898, complement A359897.
The odd-length strict case is A359900, complement A359899.
A000041 counts partitions, strict A000009.
A008284 and A058398 count partitions by mean, ranked by A326567/A326568.
A008289 counts strict partitions by mean.
A027193 counts odd-length partitions, strict A067659, ranked by A026424.
A067538 counts ptns with integer mean, strict A102627, ranked by A316413.
A237984 counts ptns containing their mean, strict A240850, ranked by A327473.
A325347 counts ptns with integer median, strict A359907, ranked by A359908.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.
A359909 counts factorizations with the same mean as median, odd-len A359910.

Programs

  • Mathematica
    Table[Length[Select[IntegerPartitions[n],Mean[#]!=Median[#]&]],{n,0,30}]

A359912 Numbers whose prime indices do not have integer median.

Original entry on oeis.org

1, 6, 14, 15, 26, 33, 35, 36, 38, 51, 58, 60, 65, 69, 74, 77, 84, 86, 93, 95, 106, 119, 122, 123, 132, 141, 142, 143, 145, 150, 156, 158, 161, 177, 178, 185, 196, 201, 202, 204, 209, 210, 214, 215, 216, 217, 219, 221, 225, 226, 228, 249, 262, 265, 276, 278
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   1: {}
   6: {1,2}
  14: {1,4}
  15: {2,3}
  26: {1,6}
  33: {2,5}
  35: {3,4}
  36: {1,1,2,2}
  38: {1,8}
  51: {2,7}
  58: {1,10}
  60: {1,1,2,3}
		

Crossrefs

For prime factors instead of indices we have A072978, complement A359913.
These partitions are counted by A307683.
For mean instead of median: A348551, complement A316413, counted by A349156.
The complement is A359908, counted by A325347.
Positions of odd terms in A360005.
A112798 lists prime indices, length A001222, sum A056239.
A326567/A326568 gives the mean of prime indices, conjugate A326839/A326840.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],!IntegerQ[Median[prix[#]]]&]

A359178 Numbers with a unique smallest prime exponent.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 11, 12, 13, 16, 17, 18, 19, 20, 23, 24, 25, 27, 28, 29, 31, 32, 37, 40, 41, 43, 44, 45, 47, 48, 49, 50, 52, 53, 54, 56, 59, 61, 63, 64, 67, 68, 71, 72, 73, 75, 76, 79, 80, 81, 83, 88, 89, 92, 96, 97, 98, 99, 101, 103, 104, 107, 108, 109, 112, 113, 116, 117
Offset: 1

Views

Author

Jens Ahlström, Jan 08 2023

Keywords

Comments

180 is the smallest number with a unique smallest prime exponent that is not a member of A130091.

Examples

			2 = 2^1 is a term since it has 1 as a unique smallest exponent.
6 = 2^1 * 3^1 is not a term since it has two primes with the same smallest exponent.
180 = 2^2 * 3^2 * 5^1 is a term since it has 1 as a unique smallest exponent.
		

Crossrefs

For parts instead of multiplicities we have A247180, counted by A002865.
For greatest instead of smallest we have A356862, counted by A362608.
The complement is A362606, counted by A362609.
Partitions of this type are counted by A362610.
These are the positions of 1's in A362613, for modes A362611.
A001221 counts prime exponents and A001222 adds them up.
A027746 lists prime factors, A112798 indices, A124010 exponents.

Programs

  • Mathematica
    q[n_] := Module[{e = FactorInteger[n][[;; , 2]]}, Count[e, Min[e]] == 1]; Select[Range[2, 200], q] (* Amiram Eldar, Jan 08 2023 *)
  • PARI
    isok(n) = if (n>1, my(f=factor(n), e = vecmin(f[,2])); #select(x->(x==e), f[,2], 1) == 1); \\ Michel Marcus, Jan 27 2023
  • Python
    from sympy import factorint
    def ok(k):
      c = sorted(factorint(k).values())
      return len(c) == 1 or c[0] != c[1]
    print([k for k in range(2, 118) if ok(k)])
    
  • Python
    from itertools import count, islice
    from sympy import factorint
    def A359178_gen(startvalue=2): # generator of terms >= startvalue
        return filter(lambda n:(f:=list(factorint(n).values())).count(min(f))==1,count(max(startvalue,2)))
    A359178_list = list(islice(A359178_gen(),20)) # Chai Wah Wu, Feb 08 2023
    
Showing 1-10 of 80 results. Next