cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-10 of 37 results. Next

A360005 Two times the median of the multiset of prime indices of n.

Original entry on oeis.org

2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 2, 12, 5, 5, 2, 14, 4, 16, 2, 6, 6, 18, 2, 6, 7, 4, 2, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 2, 26, 4, 28, 2, 4, 10, 30, 2, 8, 6, 9, 2, 32, 4, 8, 2, 10, 11, 34, 3, 36, 12, 4, 2, 9, 4, 38, 2, 11, 6, 40, 2, 42, 13, 6, 2, 9, 4, 44, 2
Offset: 2

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so a(360) = 3.
		

Crossrefs

The triangle for this statistic is A359893, cf. A359901, A359902.
Positions of even terms are A359908, odd A359912.
Positions of first appearances are A360006, sorted A360007.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[prix[n]],{n,2,100}]

A359908 Numbers whose prime indices have integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 12, 13, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 40, 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 52, 53, 54, 55, 56, 57, 59, 61, 62, 63, 64, 66, 67, 68, 70, 71, 72, 73, 75, 76, 78, 79, 80, 81, 82, 83
Offset: 1

Views

Author

Gus Wiseman, Jan 23 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The prime indices of 180 are {1,1,2,2,3}, with median 2, so 180 is in the sequence.
The prime indices of 360 are {1,1,1,2,2,3}, with median 3/2, so 360 is not in the sequence.
		

Crossrefs

The odd-length case is A027193.
For mean instead of median we have A316413.
These partitions are counted by A325347, strict A359907.
The complement is A359912, counted by A307683.
The median of prime indices is given by A360005/2.
The case of integer mean also is A360009.
A112798 lists prime indices, length A001222, sum A056239.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Median[prix[#]]]&]

A307683 Number of partitions of n having a non-integer median.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 4, 1, 7, 5, 11, 8, 18, 17, 31, 28, 47, 51, 75, 81, 119, 134, 181, 206, 277, 323, 420, 488, 623, 737, 922, 1084, 1352, 1597, 1960, 2313, 2819, 3330, 4029, 4743, 5704, 6722, 8030, 9434, 11234, 13175, 15601, 18262, 21552, 25184, 29612, 34518
Offset: 1

Views

Author

Clark Kimberling, Apr 24 2019

Keywords

Comments

This sequence and A325347 partition the partition numbers, A000041.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). - Gus Wiseman, Mar 16 2023

Examples

			a(7) counts these 4 partitions: [6,1], [5,2], [4,3], [3,2,1,1].
		

Crossrefs

The complement is counted by A325347, strict A359907.
For mean instead of median we have A349156, strict A361391.
These partitions have ranks A359912, complement A359908.
The strict case is A360952.
A000041 counts integer partitions, strict A000009.
A008284/A058398/A327482 count partitions by mean.
A359893/A359901/A359902 count partitions by median.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], q_ /; !IntegerQ[Median[q]]], {n, 10}]

A360457 Two times the median of the set of distinct prime indices of n; a(1) = 1.

Original entry on oeis.org

1, 2, 4, 2, 6, 3, 8, 2, 4, 4, 10, 3, 12, 5, 5, 2, 14, 3, 16, 4, 6, 6, 18, 3, 6, 7, 4, 5, 20, 4, 22, 2, 7, 8, 7, 3, 24, 9, 8, 4, 26, 4, 28, 6, 5, 10, 30, 3, 8, 4, 9, 7, 32, 3, 8, 5, 10, 11, 34, 4, 36, 12, 6, 2, 9, 4, 38, 8, 11, 6, 40, 3, 42, 13, 5, 9, 9, 4, 44, 4
Offset: 1

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798. Distinct prime indices are listed by A304038.

Examples

			The prime indices of 65 are {3,6}, with distinct parts {3,6}, with median 9/2, so a(65) = 9.
The prime indices of 900 are {1,1,2,2,3,3}, with distinct parts {1,2,3}, with median 2, so a(900) = 4.
		

Crossrefs

The version for divisors is A063655.
For mean instead of two times median we have A326619/A326620.
The version for all prime indices is A360005.
Positions of first appearances are A360006, sorted A360007.
The version for distinct prime factors is A360458.
The version for all prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360550.
Positions of odd terms are A360551.
The version for 0-prepended differences is A360555.
A112798 lists prime indices, length A001222, sum A056239.
A304038 lists distinct prime indices.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    Table[If[n==1,1,2*Median[PrimePi/@First/@FactorInteger[n]]],{n,100}]

A359890 Numbers whose prime indices do not have the same mean as median.

Original entry on oeis.org

12, 18, 20, 24, 28, 40, 42, 44, 45, 48, 50, 52, 54, 56, 60, 63, 66, 68, 70, 72, 75, 76, 78, 80, 84, 88, 92, 96, 98, 99, 102, 104, 108, 112, 114, 116, 117, 120, 124, 126, 130, 132, 135, 136, 138, 140, 144, 147, 148, 150, 152, 153, 154, 156, 160, 162, 164, 165
Offset: 1

Views

Author

Gus Wiseman, Jan 22 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
   12: {1,1,2}
   18: {1,2,2}
   20: {1,1,3}
   24: {1,1,1,2}
   28: {1,1,4}
   40: {1,1,1,3}
   42: {1,2,4}
   44: {1,1,5}
   45: {2,2,3}
   48: {1,1,1,1,2}
For example, the prime indices of 360 are {1,1,1,2,2,3}, with mean 5/3 and median 3/2, so 360 is in the sequence.
		

Crossrefs

The LHS (mean of prime indices) is A326567/A326568.
The complement is A359889, counted by A240219.
The odd-length case is A359891, complement A359892.
These partitions are counted by A359894.
The strict case is counted by A359898, odd-length A359900.
The RHS (median of prime indices) is A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A088529/A088530 gives mean of prime signature A124010.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A359908 lists numbers whose prime indices have integer median.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[1000],Mean[prix[#]]!=Median[prix[#]]&]

A360006 Least positive integer whose prime indices have median n/2. a(1) = 1.

Original entry on oeis.org

1, 2, 6, 3, 14, 5, 26, 7, 38, 11, 58, 13, 74, 17, 86, 19, 106, 23, 122, 29, 142, 31, 158, 37, 178, 41, 202, 43, 214, 47, 226, 53, 262, 59, 278, 61, 302, 67, 326, 71, 346, 73, 362, 79, 386, 83, 398, 89, 446, 97, 458, 101, 478, 103, 502, 107, 526, 109, 542, 113
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Crossrefs

Position of first appearance of n in A360005.
The sorted version is A360007, for mean A360008.
A112798 lists prime indices, length A001222, sum A056239.
A316413 lists numbers whose prime indices have integer mean.
A325347 = partitions w/ integer median, strict A359907, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 counts partitions by median, cf. A359901, A359902.
A359908 = numbers w/ integer median of prime indices, complement A359912.

Programs

  • Mathematica
    nn=100;
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    seq=Table[If[n==1,1,2*Median[prix[n]]],{n,nn}];
    Table[Position[seq,k][[1,1]],{k,Count[Differences[Union[seq]],1]}]

Formula

Consists of 1 followed by A000040 interleaved with 2*A031215.

A238479 Number of partitions of n whose median is not a part.

Original entry on oeis.org

0, 0, 1, 1, 2, 3, 4, 5, 8, 10, 13, 18, 23, 30, 40, 50, 64, 83, 104, 131, 166, 206, 256, 320, 394, 485, 598, 730, 891, 1088, 1318, 1596, 1932, 2326, 2797, 3360, 4020, 4804, 5735, 6824, 8108, 9624, 11392, 13468, 15904, 18737, 22048, 25914, 30400, 35619, 41686
Offset: 1

Views

Author

Clark Kimberling, Feb 27 2014

Keywords

Comments

Also, the number of partitions p of n such that (1/2)*max(p) is a part of p.
Also the number of even-length integer partitions of n with distinct middle parts. For example, the partition (4,3,2,1) has middle parts {2,3} so is counted under a(10), but (3,2,2,1) has middle parts {2,2} so is not counted under a(8). - Gus Wiseman, May 13 2023

Examples

			a(6) counts these partitions:  51, 42, 2211 which all have an even number of parts, and their medians 3, 3 and 1.5 are not present. Note that the partitions 33 and 3111, although having an even number of parts, are not included in the count of a(6), but instead in that of A238478(6), as their medians, 3 for the former and 1 for the latter, are present in those partitions.
		

Crossrefs

The complement is A238478, ranks A362618.
For mean instead of median we have A327472, complement A237984.
These partitions have ranks A362617.
A000041 counts integer partitions, even-length A027187.
A325347 counts partitions with integer median, complement A307683.
A359893/A359901/A359902 count partitions by median.
A359908 ranks partitions with integer median, complement A359912.

Programs

  • Mathematica
    Table[Count[IntegerPartitions[n], p_ /; !MemberQ[p, Median[p]]], {n, 40}]
    (* also *)
    Table[Count[IntegerPartitions[n], p_ /; MemberQ[p, Max[p]/2]], {n, 50}]
  • PARI
    my(q='q+O('q^50)); concat([0,0], Vec(sum(n=1,17,q^(3*n)/prod(k=1,2*n,1-q^k)))) \\ David Radcliffe, Jun 25 2025
  • Python
    from sympy.utilities.iterables import partitions
    def A238479(n): return sum(1 for p in partitions(n) if (m:=max(p,default=0))&1^1 and m>>1 in p) # Chai Wah Wu, Sep 21 2023
    

Formula

a(n) = A000041(n) - A238478(n).
For all n, A027187(n) >= a(n). [Because when a partition of n has an odd number of parts, then it is not counted by this sequence (cf. A238478) and also some of the partitions with an even number of parts might be excluded here. Cf. Examples.] - Antti Karttunen, Feb 27 2014
From Jeremy Lovejoy, Sep 29 2022: (Start)
G.f.: Sum_{n>=1} q^(3*n)/Product_{k=1..2*n} (1-q^k).
a(n) ~ Pi/(2^(17/4)*3^(3/4)*n^(5/4))*exp(Pi*sqrt(2*n/3)). Proved by Blecher and Knopfmacher. (End)
a(n) = A087897(2*n) = A035294(n) - A078408(n-1). - Mathew Englander, May 20 2023

A360555 Two times the median of the first differences of the 0-prepended prime indices of n > 1.

Original entry on oeis.org

2, 4, 1, 6, 2, 8, 0, 2, 3, 10, 2, 12, 4, 3, 0, 14, 2, 16, 2, 4, 5, 18, 1, 3, 6, 0, 2, 20, 2, 22, 0, 5, 7, 4, 1, 24, 8, 6, 1, 26, 2, 28, 2, 2, 9, 30, 0, 4, 2, 7, 2, 32, 1, 5, 1, 8, 10, 34, 2, 36, 11, 4, 0, 6, 2, 38, 2, 9, 2, 40, 0, 42, 12, 2, 2, 5, 2, 44, 0, 0
Offset: 2

Views

Author

Gus Wiseman, Feb 14 2023

Keywords

Comments

The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length). Since the denominator is always 1 or 2, the median can be represented as an integer by multiplying by 2.
A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so a(1617) = 3.
		

Crossrefs

The version for divisors is A063655.
Differences of 0-prepended prime indices are listed by A287352.
The version for prime indices is A360005.
The version for distinct prime indices is A360457.
The version for distinct prime factors is A360458.
The version for prime factors is A360459.
The version for prime multiplicities is A360460.
Positions of even terms are A360556
Positions of odd terms are A360557
Positions of 0's are A360558, counted by A360254.
For mean instead of two times median we have A360614/A360615.
A112798 lists prime indices, length A001222, sum A056239.
A325347 counts partitions with integer median, complement A307683.
A326567/A326568 gives mean of prime indices.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Table[2*Median[Differences[Prepend[prix[n],0]]],{n,2,100}]

A360556 Numbers > 1 whose first differences of 0-prepended prime indices have integer median.

Original entry on oeis.org

2, 3, 5, 6, 7, 8, 9, 11, 12, 13, 14, 16, 17, 18, 19, 20, 21, 23, 26, 27, 28, 29, 30, 31, 32, 35, 37, 38, 39, 41, 42, 43, 44, 45, 47, 48, 49, 50, 52, 53, 57, 58, 59, 60, 61, 63, 64, 65, 66, 67, 68, 70, 71, 72, 73, 74, 75, 76, 78, 79, 80, 81, 83, 84, 86, 87, 89
Offset: 1

Views

Author

Gus Wiseman, Feb 16 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The 0-prepended prime indices of 1617 are {0,2,4,4,5}, with sorted differences {0,1,2,2}, with median 3/2, so 1617 is not in the sequence.
		

Crossrefs

For mean instead of median we have A340610.
Positions of even terms in A360555.
The complement is A360557 (without 1).
These partitions are counted by A360688.
- For divisors (A063655) we have A139711, complement A139710.
- For prime indices (A360005) we have A359908, complement A359912.
- For distinct prime indices (A360457) we have A360550, complement A360551.
- For distinct prime factors (A360458) we have A360552, complement A100367.
- For prime factors (A360459) we have A359913, complement A072978.
- For prime multiplicities (A360460) we have A360553, complement A360554.
- For 0-prepended differences (A360555) we have A360556, complement A360557.
A112798 lists prime indices, length A001222, sum A056239.
A325347 = partitions w/ integer median, complement A307683, strict A359907.
A359893 and A359901 count partitions by median, odd-length A359902.
A360614/A360615 = mean of first differences of 0-prepended prime indices.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[2,100],IntegerQ[Median[Differences[Prepend[prix[#],0]]]]&]

A360009 Numbers whose prime indices have integer mean and integer median.

Original entry on oeis.org

2, 3, 4, 5, 7, 8, 9, 10, 11, 13, 16, 17, 19, 21, 22, 23, 25, 27, 28, 29, 30, 31, 32, 34, 37, 39, 41, 43, 46, 47, 49, 53, 55, 57, 59, 61, 62, 64, 67, 68, 71, 73, 78, 79, 81, 82, 83, 85, 87, 88, 89, 90, 91, 94, 97, 98, 99, 100, 101, 103, 105, 107, 109, 110, 111
Offset: 1

Views

Author

Gus Wiseman, Jan 24 2023

Keywords

Comments

A prime index of n is a number m such that prime(m) divides n. The multiset of prime indices of n is row n of A112798.
The median of a multiset is either the middle part (for odd length), or the average of the two middle parts (for even length).

Examples

			The terms together with their prime indices begin:
    2: {1}
    3: {2}
    4: {1,1}
    5: {3}
    7: {4}
    8: {1,1,1}
    9: {2,2}
   10: {1,3}
   11: {5}
   13: {6}
   16: {1,1,1,1}
   17: {7}
   19: {8}
   21: {2,4}
   22: {1,5}
   23: {9}
   25: {3,3}
   27: {2,2,2}
   28: {1,1,4}
		

Crossrefs

For just integer mean we have A316413 (counted by A067538).
The mean of prime indices is given by A326567/A326568.
The complement is A348551 \/ A359912 (counted by A349156 and A307683).
These partitions are counted by A359906.
For just integer median we have A359908 (counted by A325347).
The median of prime indices is given by A360005/2.
A058398 counts partitions by mean, see also A008284, A327482.
A112798 lists prime indices, length A001222, sum A056239.
A326622 counts factorizations with integer mean, strict A328966.
A359893 and A359901 count partitions by median, odd-length A359902.

Programs

  • Mathematica
    prix[n_]:=If[n==1,{},Flatten[Cases[FactorInteger[n],{p_,k_}:>Table[PrimePi[p],{k}]]]];
    Select[Range[100],IntegerQ[Mean[prix[#]]]&&IntegerQ[Median[prix[#]]]&]

Formula

Intersection of A316413 and A359908.
Showing 1-10 of 37 results. Next