Jeremy Lovejoy has authored 52 sequences. Here are the ten most recent ones:
A356367
Number of plane partitions of n having exactly one row and one column, each of equal length.
Original entry on oeis.org
1, 1, 1, 2, 2, 5, 6, 11, 16, 26, 36, 58, 81, 122, 172, 251, 350, 502, 692, 972, 1332, 1842, 2499, 3414, 4592, 6200, 8277, 11064, 14656, 19424, 25544, 33584, 43880, 57274, 74362, 96429, 124468, 160422, 205942, 263938, 337083, 429768
Offset: 0
For n = 7 the valid unimodal compositions of n+1=8 are (8), (1,6,1), (1,5,2), (2,5,1), (3,4,1), (1,4,3), (2,4,2), (1,1,4,1,1), (1,1,3,2,1), (1,2,3,1,1) and (1,1,1,2,1,1,1), and so a(7) = 11.
-
nmax = 50; CoefficientList[Series[1 + 1/Product[(1 - x^k)^2, {k, 1, nmax}] * Sum[(-1)^(k + r + 1) * x^(k*(k + 1)/2 + r*(r + 1)/2 + 2*k*r)*(1 - x^r), {r, 0, nmax}, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 28 2023 *)
A357459
The total number of fixed points among all partitions of n, when parts are written in nondecreasing order.
Original entry on oeis.org
0, 1, 1, 3, 4, 7, 10, 17, 22, 34, 46, 66, 88, 123, 160, 218, 283, 375, 482, 630, 799, 1030, 1299, 1651, 2066, 2602, 3230, 4032, 4976, 6157, 7554, 9288, 11326, 13837, 16793, 20393, 24632, 29763, 35783, 43031, 51527, 61683, 73577, 87729, 104252, 123834, 146664
Offset: 0
The 7 partitions of 5 are (1,1,1,1,1), (1,1,1,2), (1,2,2), (1,1,3), (1,4), (2,3), and (5), containing 1, 1, 2, 2, 1, 0, and 0 fixed points, respectively, and so a(5) = 1+1+2+2+1+0+0=7.
A357320
The total number of fixed points among all strict partitions of n, when parts are written in increasing order.
Original entry on oeis.org
0, 1, 0, 2, 1, 1, 4, 3, 4, 4, 9, 8, 11, 12, 15, 21, 24, 28, 34, 40, 46, 60, 67, 80, 93, 110, 125, 148, 174, 200, 231, 268, 306, 354, 404, 461, 534, 606, 690, 786, 895, 1012, 1150, 1298, 1467, 1662, 1872, 2104, 2374, 2664, 2990, 3355, 3759, 4202, 4702, 5256
Offset: 0
The 10 strict partition of 10 are (1,2,3,4), (2,3,5), (1,4,5), (1,3,6), (4,6), (1,2,7), (3,7), (2,8), (1,9), and (10), containing 4,0,1,1,0,2,0,0,1, and 0 fixed points, respectively, and so a(10) = 9.
For the same count but where parts are written in decreasing order, see
A352829.
For the case of ordinary partitions, see
A357459.
A347207
The number of overpartitions of n whose Frobenius symbols have only positive parts in the top row.
Original entry on oeis.org
1, 0, 2, 4, 6, 10, 16, 26, 40, 62, 92, 136, 198, 284, 404, 570, 794, 1100, 1512, 2060, 2792, 3760, 5030, 6696, 8868, 11682, 15322, 20008, 26012, 33688, 43464, 55864, 71560, 91360, 116256, 147490, 186562, 235304, 295976, 371308, 464614, 579944, 722180, 897212
Offset: 0
A347206
The number of overpartitions of n whose Frobenius symbols have only odd parts in the top row.
Original entry on oeis.org
1, 0, 2, 2, 4, 4, 8, 10, 16, 20, 30, 38, 54, 68, 94, 120, 160, 202, 266, 334, 432, 540, 688, 856, 1080, 1334, 1668, 2052, 2542, 3110, 3828, 4660, 5698, 6906, 8394, 10130, 12250, 14720, 17716, 21210, 25412, 30310, 36172, 42994, 51114, 60558, 71740, 84732, 100052
Offset: 0
A340668
The number of overpartitions of n where the number of non-overlined parts is at least two more than the number of overlined parts.
Original entry on oeis.org
0, 0, 1, 2, 5, 9, 17, 29, 49, 79, 125, 193, 293, 437, 642, 932, 1336, 1896, 2663, 3709, 5121, 7020, 9551, 12913, 17347, 23172, 30779, 40679, 53495, 70030, 91269, 118459, 153133, 197214, 253057, 323595, 412418, 523953, 663612, 838035, 1055304, 1325287, 1659969
Offset: 0
a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
-
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
b[n_, i_, c_] := b[n, i, c] = If[n == 0,
If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[
Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)
A340659
The number of overpartitions of n having an equal number of overlined and non-overlined parts.
Original entry on oeis.org
1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0
a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
-
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)
A340658
The number of overpartitions of n having more non-overlined parts than overlined parts.
Original entry on oeis.org
0, 1, 2, 4, 8, 14, 25, 41, 67, 105, 163, 246, 368, 540, 784, 1124, 1596, 2242, 3124, 4316, 5918, 8058, 10899, 14651, 19581, 26028, 34417, 45293, 59327, 77372, 100483, 129984, 167502, 215077, 275199, 350966, 446162, 565451, 714515, 900334, 1131370, 1417963
Offset: 0
a(3) = 4 counts the overpartitions [3], [2,1], [1,1,1], and [1',1,1].
-
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c>0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 15 2021
-
b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c>0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
a[n_] := b[n, n, 0];
a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
A338860
The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.
Original entry on oeis.org
0, 1, 0, 2, 1, 3, 4, 6, 8, 11, 17, 21, 30, 38, 53, 68, 90, 115, 150, 192, 243, 312, 390, 496, 613, 775, 951, 1193, 1456, 1810, 2200, 2715, 3285, 4026, 4856, 5909, 7106, 8595, 10301, 12394, 14809, 17728, 21118, 25171, 29891, 35489, 42018, 49702, 58678, 69180
Offset: 0
The 3 partitions of 4 with more odd parts than even parts are [3,1], [2,1,1], and [1,1,1,1], while the 2 partitions of 4 with more even parts than odd parts are [4] and [2,2]. Hence a(4) = 3-2 = 1.
-
b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(i<1, 0,
b(n, i-1, t)+ b(n-i, min(n-i, i), t+(2*irem(i, 2)-1))))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..55); # Alois P. Heinz, Jan 14 2021
-
b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[i < 1, 0,
b[n, i-1, t] + b[n-i, Min[n-i, i], t + (2*Mod[i, 2]-1)]]];
a[n_] := b[n, n, 0];
Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 09 2022, after Alois P. Heinz *)
-
for(n=0,43,my(me=0,mo=0);forpart(v=n,my(x=Vec(v),se=sum(k=1,#x,x[k]%2==0),so=sum(k=1,#x,x[k]%2>0));me+=(se>so);mo+=(so>se));print1(mo-me,", ")) \\ Hugo Pfoertner, Jan 13 2021
A340623
The number of partitions of n without repeated odd parts having more even parts than odd parts.
Original entry on oeis.org
0, 0, 1, 0, 2, 1, 3, 3, 5, 7, 8, 13, 14, 23, 23, 37, 39, 59, 63, 90, 101, 136, 156, 201, 239, 296, 355, 428, 523, 617, 754, 878, 1078, 1243, 1517, 1741, 2121, 2426, 2928, 3348, 4021, 4596, 5468, 6257, 7400, 8472, 9936, 11389, 13285, 15233, 17645, 20244, 23346
Offset: 0
a(7) = 3 counts the partitions [4,2,1], [3,2,2], and [2,2,2,1].
-
b:= proc(n, i, c) option remember; `if`(n=0,
`if`(c<0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
`if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
end:
a:= n-> b(n$2, 0):
seq(a(n), n=0..60); # Alois P. Heinz, Jan 13 2021
-
nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k - 1))/(1 - x^(2*k)), {k, 1, nmax/2}] - Sum[x^(k^2)/Product[(1 - x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
-
my(N=66, x='x+O('x^N)); concat([0, 0], Vec(prod(k=1, N, (1+x^(2*k-1))/(1-x^(2*k)))-sum(k=0, sqrt(N), x^(k^2)/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021
Comments