cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

User: Jeremy Lovejoy

Jeremy Lovejoy's wiki page.

Jeremy Lovejoy has authored 52 sequences. Here are the ten most recent ones:

A356367 Number of plane partitions of n having exactly one row and one column, each of equal length.

Original entry on oeis.org

1, 1, 1, 2, 2, 5, 6, 11, 16, 26, 36, 58, 81, 122, 172, 251, 350, 502, 692, 972, 1332, 1842, 2499, 3414, 4592, 6200, 8277, 11064, 14656, 19424, 25544, 33584, 43880, 57274, 74362, 96429, 124468, 160422, 205942, 263938, 337083, 429768
Offset: 0

Author

Jeremy Lovejoy, Oct 16 2022

Keywords

Comments

The empty plane partition of 0 contributes an initial term equal to 1.
Also equal to the number of unimodal compositions of n+1 where the peak appears exactly once and the number of parts to the left of the peak is equal to the number of parts to the right of the peak.

Examples

			For n = 7 the valid unimodal compositions of n+1=8 are (8), (1,6,1), (1,5,2), (2,5,1), (3,4,1), (1,4,3), (2,4,2), (1,1,4,1,1), (1,1,3,2,1), (1,2,3,1,1) and (1,1,1,2,1,1,1), and so a(7) = 11.
		

Crossrefs

Programs

  • Mathematica
    nmax = 50; CoefficientList[Series[1 + 1/Product[(1 - x^k)^2, {k, 1, nmax}] * Sum[(-1)^(k + r + 1) * x^(k*(k + 1)/2 + r*(r + 1)/2 + 2*k*r)*(1 - x^r), {r, 0, nmax}, {k, 0, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Apr 28 2023 *)

Formula

G.f.: 1 + (1/Product_{n>=1}(1-x^n)^2)*Sum_{r,n>=0}(-1)^(n+r+1)*x^(n*(n+1)/2 + r*(r+1)/2 + 2*n*r)*(1-x^r).

A357459 The total number of fixed points among all partitions of n, when parts are written in nondecreasing order.

Original entry on oeis.org

0, 1, 1, 3, 4, 7, 10, 17, 22, 34, 46, 66, 88, 123, 160, 218, 283, 375, 482, 630, 799, 1030, 1299, 1651, 2066, 2602, 3230, 4032, 4976, 6157, 7554, 9288, 11326, 13837, 16793, 20393, 24632, 29763, 35783, 43031, 51527, 61683, 73577, 87729, 104252, 123834, 146664
Offset: 0

Author

Jeremy Lovejoy, Sep 29 2022

Keywords

Comments

For instance, the partition (1,3,3,3,5) = (y(1),y(2),y(3),y(4),y(5)) has 3 fixed points, since y(i) = i for i=1,3,5.

Examples

			The 7 partitions of 5 are (1,1,1,1,1), (1,1,1,2), (1,2,2), (1,1,3), (1,4), (2,3), and (5), containing 1, 1, 2, 2, 1, 0, and 0 fixed points, respectively, and so a(5) = 1+1+2+2+1+0+0=7.
		

Crossrefs

Cf. A001522 (parts decreasing), A099036.

Formula

G.f.: (Product_{k>=1}(1/(1-q^k)))*Sum_{n>=1}q^(2*n-1)*Product_{k=n..2*n-2}(1-q^k).

A357320 The total number of fixed points among all strict partitions of n, when parts are written in increasing order.

Original entry on oeis.org

0, 1, 0, 2, 1, 1, 4, 3, 4, 4, 9, 8, 11, 12, 15, 21, 24, 28, 34, 40, 46, 60, 67, 80, 93, 110, 125, 148, 174, 200, 231, 268, 306, 354, 404, 461, 534, 606, 690, 786, 895, 1012, 1150, 1298, 1467, 1662, 1872, 2104, 2374, 2664, 2990, 3355, 3759, 4202, 4702, 5256
Offset: 0

Author

Jeremy Lovejoy, Sep 29 2022

Keywords

Comments

For instance, the partition (1,2,4,7,11) = (y(1),y(2),y(3),y(4),y(5)) has 2 fixed points, since y(1) = 1 and y(2) = 2.

Examples

			The 10 strict partition of 10 are (1,2,3,4), (2,3,5), (1,4,5), (1,3,6), (4,6), (1,2,7), (3,7), (2,8), (1,9), and (10), containing 4,0,1,1,0,2,0,0,1, and 0 fixed points, respectively, and so a(10) = 9.
		

Crossrefs

For the same count but where parts are written in decreasing order, see A352829.
For the case of ordinary partitions, see A357459.

Formula

G.f.: (Product_{k>=1}(1+q^k))*Sum_{n>=1}q^(n*(n+1)/2)/Product_{k=1..n}(1+q^k).

A347207 The number of overpartitions of n whose Frobenius symbols have only positive parts in the top row.

Original entry on oeis.org

1, 0, 2, 4, 6, 10, 16, 26, 40, 62, 92, 136, 198, 284, 404, 570, 794, 1100, 1512, 2060, 2792, 3760, 5030, 6696, 8868, 11682, 15322, 20008, 26012, 33688, 43464, 55864, 71560, 91360, 116256, 147490, 186562, 235304, 295976, 371308, 464614, 579944, 722180, 897212
Offset: 0

Author

Jeremy Lovejoy, Aug 23 2021

Keywords

Comments

a(n) is also the excess of the number of overpartitions of n with an even number of overlined parts larger than the number of non-overlined parts over the number of overpartitions of n with an odd number of overlined parts larger than the number of non-overlined parts.

Crossrefs

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k))*(1-2*Sum_{n>=1} q^(n*(3*n-1)/2)*(1-q^n)).

A347206 The number of overpartitions of n whose Frobenius symbols have only odd parts in the top row.

Original entry on oeis.org

1, 0, 2, 2, 4, 4, 8, 10, 16, 20, 30, 38, 54, 68, 94, 120, 160, 202, 266, 334, 432, 540, 688, 856, 1080, 1334, 1668, 2052, 2542, 3110, 3828, 4660, 5698, 6906, 8394, 10130, 12250, 14720, 17716, 21210, 25412, 30310, 36172, 42994, 51114, 60558, 71740, 84732, 100052
Offset: 0

Author

Jeremy Lovejoy, Aug 23 2021

Keywords

Comments

a(n) is also the excess of the number of overpartitions of n with an even number of non-overlined parts larger than the number of overlined parts over the number of overpartitions of n with an odd number of non-overlined parts larger than the number of overlined parts.

Crossrefs

Formula

G.f.: (Product_{k>=1} 1/(1-q^k))*Sum_{n>=0} q^(n*(3*n+1)/2)*(1-q^(2*n+1)).

A340668 The number of overpartitions of n where the number of non-overlined parts is at least two more than the number of overlined parts.

Original entry on oeis.org

0, 0, 1, 2, 5, 9, 17, 29, 49, 79, 125, 193, 293, 437, 642, 932, 1336, 1896, 2663, 3709, 5121, 7020, 9551, 12913, 17347, 23172, 30779, 40679, 53495, 70030, 91269, 118459, 153133, 197214, 253057, 323595, 412418, 523953, 663612, 838035, 1055304, 1325287, 1659969
Offset: 0

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Comments

Also equal to A340658(n) - A001524(n).

Examples

			a(4) = 5 counts the overpartitions [3,1], [2,2], [2,1,1], [1,1,1,1], and [1',1,1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
         `if`(c>1, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
          add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n == 0,
         If[c > 1, 1, 0], If[i < 1, 0, b[n, i-1, c] + Sum[
         Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 60}] (* Jean-François Alcover, May 14 2022, after Alois P. Heinz *)

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/ ((Product_{k=1..n} (1-q^k)^2) * (1-q^(n+1))).

A340659 The number of overpartitions of n having an equal number of overlined and non-overlined parts.

Original entry on oeis.org

1, 0, 1, 2, 3, 5, 7, 11, 15, 23, 31, 45, 61, 85, 114, 156, 206, 276, 363, 477, 621, 808, 1041, 1339, 1713, 2182, 2769, 3501, 4409, 5534, 6927, 8635, 10741, 13316, 16467, 20303, 24980, 30643, 37518, 45815, 55836, 67889, 82395, 99772, 120609, 145501, 175229, 210637
Offset: 0

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Examples

			a(5) = 5 counts the overpartitions [4',1], [4,1'], [3',2], [3,2'], and [2',1',1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c=0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
           add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c==0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)
    nmax = 50; CoefficientList[Series[1 + Sum[x^(j*(j+1)/2 + j) / QPochhammer[x, x, j]^2, {j, 1, nmax}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jun 06 2021 *)

Formula

G.f.: Sum_{n>=0} q^(n*(n+1)/2 + n)/Product_{k=1..n} (1-q^k)^2.
a(n) ~ exp(2*Pi*sqrt(n/5)) / (2^(3/2) * 5^(3/4) * phi^2 * n), where phi = A001622 is the golden ratio. - Vaclav Kotesovec, Jun 06 2021
a(n) = A143184(n) - A001524(n). - Vaclav Kotesovec, Jun 06 2021

Extensions

a(0)=1 prepended by Alois P. Heinz, Jan 15 2021

A340658 The number of overpartitions of n having more non-overlined parts than overlined parts.

Original entry on oeis.org

0, 1, 2, 4, 8, 14, 25, 41, 67, 105, 163, 246, 368, 540, 784, 1124, 1596, 2242, 3124, 4316, 5918, 8058, 10899, 14651, 19581, 26028, 34417, 45293, 59327, 77372, 100483, 129984, 167502, 215077, 275199, 350966, 446162, 565451, 714515, 900334, 1131370, 1417963
Offset: 0

Author

Jeremy Lovejoy, Jan 15 2021

Keywords

Examples

			a(3) = 4 counts the overpartitions [3], [2,1], [1,1,1], and [1',1,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
         `if`(c>0, 1, 0), `if`(i<1, 0, b(n, i-1, c)+add(
          add(b(n-i*j, i-1, c+j-t), t=[0, 2]), j=1..n/i)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 15 2021
  • Mathematica
    b[n_, i_, c_] := b[n, i, c] = If[n==0, If[c>0, 1, 0], If[i<1, 0, b[n, i-1, c] + Sum[Sum[b[n-i*j, i-1, c+j-t], {t, {0, 2}}], {j, 1, n/i}]]];
    a[n_] := b[n, n, 0];
    a /@ Range[0, 60] (* Jean-François Alcover, Jan 29 2021, after Alois P. Heinz *)

Formula

G.f.: (Product_{k>=1} (1+q^k)/(1-q^k)) - Sum_{n>=0} q^(n*(n+1)/2)/Product_{k=1..n} (1-q^k)^2.

A338860 The excess of the number of partitions of n with more odd parts than even parts over the number of partitions of n with more even parts than odd parts.

Original entry on oeis.org

0, 1, 0, 2, 1, 3, 4, 6, 8, 11, 17, 21, 30, 38, 53, 68, 90, 115, 150, 192, 243, 312, 390, 496, 613, 775, 951, 1193, 1456, 1810, 2200, 2715, 3285, 4026, 4856, 5909, 7106, 8595, 10301, 12394, 14809, 17728, 21118, 25171, 29891, 35489, 42018, 49702, 58678, 69180
Offset: 0

Author

Jeremy Lovejoy, Jan 12 2021

Keywords

Examples

			The 3 partitions of 4 with more odd parts than even parts are [3,1], [2,1,1], and [1,1,1,1], while the 2 partitions of 4 with more even parts than odd parts are [4] and [2,2].   Hence a(4) = 3-2 = 1.
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, t) option remember; `if`(n=0, signum(t), `if`(i<1, 0,
          b(n, i-1, t)+ b(n-i, min(n-i, i), t+(2*irem(i, 2)-1))))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..55);  # Alois P. Heinz, Jan 14 2021
  • Mathematica
    b[n_, i_, t_] := b[n, i, t] = If[n == 0, Sign[t], If[i < 1, 0,
       b[n, i-1, t] + b[n-i, Min[n-i, i], t + (2*Mod[i, 2]-1)]]];
    a[n_] := b[n, n, 0];
    Table[a[n], {n, 0, 55}] (* Jean-François Alcover, Sep 09 2022, after Alois P. Heinz *)
  • PARI
    for(n=0,43,my(me=0,mo=0);forpart(v=n,my(x=Vec(v),se=sum(k=1,#x,x[k]%2==0),so=sum(k=1,#x,x[k]%2>0));me+=(se>so);mo+=(so>se));print1(mo-me,", ")) \\ Hugo Pfoertner, Jan 13 2021

Formula

G.f.: (Product_{k>=1} 1/(1-x^(2*k-1)))*Sum_{n>=1} q^(2*n^2-n)*(1-q^n)/Product_{k=1..n} (1-q^(2*k))^2.
a(n) = A108950(n) - A108949(n).

A340623 The number of partitions of n without repeated odd parts having more even parts than odd parts.

Original entry on oeis.org

0, 0, 1, 0, 2, 1, 3, 3, 5, 7, 8, 13, 14, 23, 23, 37, 39, 59, 63, 90, 101, 136, 156, 201, 239, 296, 355, 428, 523, 617, 754, 878, 1078, 1243, 1517, 1741, 2121, 2426, 2928, 3348, 4021, 4596, 5468, 6257, 7400, 8472, 9936, 11389, 13285, 15233, 17645, 20244, 23346
Offset: 0

Author

Jeremy Lovejoy, Jan 13 2021

Keywords

Examples

			a(7) = 3 counts the partitions [4,2,1], [3,2,2], and [2,2,2,1].
		

Crossrefs

Programs

  • Maple
    b:= proc(n, i, c) option remember; `if`(n=0,
          `if`(c<0, 1, 0), `if`(i<1, 0, (t-> add(b(n-i*j, i-1, c+j*
          `if`(t, 1, -1)), j=0..min(n/i, `if`(t, 1, n))))(i::odd)))
        end:
    a:= n-> b(n$2, 0):
    seq(a(n), n=0..60);  # Alois P. Heinz, Jan 13 2021
  • Mathematica
    nmax = 60; CoefficientList[Series[Product[(1 + x^(2*k - 1))/(1 - x^(2*k)), {k, 1, nmax/2}] - Sum[x^(k^2)/Product[(1 - x^(2*j))^2, {j, 1, k}], {k, 0, Sqrt[nmax]}], {x, 0, nmax}], x] (* Vaclav Kotesovec, Jan 14 2021 *)
  • PARI
    my(N=66, x='x+O('x^N)); concat([0, 0], Vec(prod(k=1, N, (1+x^(2*k-1))/(1-x^(2*k)))-sum(k=0, sqrt(N), x^(k^2)/prod(j=1, k, (1-x^(2*j))^2)))) \\ Seiichi Manyama, Jan 14 2021

Formula

G.f.: (Product_{k>=1} (1+q^(2*k-1))/(1-q^(2*k))) - Sum_{n>=0} q^(n^2)/Product_{k=1..n} (1-q^(2*k))^2.